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Abstract

Speculative episodes typically involve leverage. For example, the well known
tulipmania episode was accompanied by the introduction of foward contracts
which allowed speculators to take leveraged positions in tulip bulbs. The Great
Crash of 1929 was exacerbated by leveraged trusts which used leverage to buy
stocks. These leveraged trusts could in turn be bought on margin which allowed
speculators to hold highly leveraged positions. More recently, speculation in
the housing market was accompanied by extreme leverage. In this paper, I
provide a continuous time extension of the Harrison-Kreps(1978) speculative
model with learning. Speculators have heterogeneous priors and learn about
the unknown switching intensity between states. When the riskless rate is
fixed, the speculative premium for each investor is determined by the expected
present value of excess demand in the consumption and bond markets. Letting
the riskless rate adjust so that the market for borrowing clears provides en-
dogenous margin requirements which limit borrowing. In addition, the wealth
distribution of speculators now becomes a determinant of speculative premia
and a fairly rich set of speculative dynamics arise.
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1 Introduction

Recent events in financial markets suggest the importance of understanding how

speculation and leverage are linked. However, the current literature on speculation

typically considers partial equilibrium models in which the market for borrowing and

lending does not clear – in other words there is more lending than borrowing or vice-

versa. This approach is justified by either assuming infinitely wealthy speculators or

unlimited borrowing at a fixed risk free rate. Either assumption implies speculators do

not face capital limits nor do they face budget constraints. These types of assumptions

may be reasonable when studying a small market but become less reasonable in trying

to understand how recent events are linked to speculation and leverage.

Several papers have investigated speculation in financial markets. Miller(1978)

presents a simple static model to argue that if there are impediments to short selling

and investors have heterogeneous views on asset values, then only those who have

the highest valuations will end up buying assets. As a result, assets will tend to

be valued higher than the average valuation. While this is an important insight, the

static nature of the argument and the partial equilibrium nature of the argument does

not yield much insight into how, for example, interest rates might influence leverage

through time.

Harrison and Kreps(1978) present a model of speculative investor behavior. In

a model where again there are impediments to short selling, they show that even

if an investor has a lower view of an asset’s value, the right to resell the asset at

a future date might provide a significant source of value to the investor and induce

them to buy the asset with the intention of reselling it in the future. In this sense,

they provide a formal model of the Keynsian notion of speculation. However, in their

analysis they assume investors are infinitely wealthy which seems inconsistent with

the basic economic principle of scarcity of resources.

In this paper I first sketch a simple extension of the Harrison and Kreps(1978)

speculative model. While this extension is of independent interest, the primary moti-

vation for this extension is to develop a suitable benchmark to examine how clearing

the borrowing and lending market impacts speculative prices.

The basic uncertainty is generated by a simple (perhaps the simplest) continous

time markov chain. For simplicity there are two states of nature possible at each
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time – low dividends or high dividends1. This leads to jumps in asset prices. While

many papers have examined heterogeneous beliefs in a continuous information set-

ting, this paper examines an equilibrium when disagreements are generated by jump

uncertainty. Investors must post enough collateral to ensure that they do not jump

to default. This stands in contrast to most continuous time equilibrium models with

heterogeneous beliefs in the literature. Those models typically have continuous prices

which effectively means that the equilibrium can be enforced with zero margin re-

quirements.

At each point in time, risk neutral speculators disagree on the length of time the

economy will stay in the current state. Speculators disagreements are generated by

heterogenous priors. When investors do not learn through time as in the original

Harrison Kreps model, the model has simple tractable solutions. As an extension we

also consider the case where as time progresses, investors learn from the past and

update their priors according to Bayes rule. The specification of the prior beliefs

allows for investors to put more weight on the data or less weight on the data so

the speed of learning can be investigated. In this model, speculators know which

state they are in but are trying to estimate the unknown swithching intensity. This

is different from models in which agents do not know the state they are in, but know

the underlying parameters.

When investors have dogmatic beliefs and are infinitely wealthy or can borrow

arbitrary amounts but face short sales constraints as in the original Harrison Kreps

model, then fixing the mean belief, prices are increasing in the magnitude of the

disagreement; this is expected based on the original Harrison Kreps analysis. How-

ever, the percentage price changes are decreasing as disagreement gets large. This

is contrary to the common assertion that volatility should be raised by dispersion of

beliefs. In particular, price volatility is highest when investors agree. To understand

this effect, recall that in the Harrsion Kreps model prices reflect the private valuation

plus the option to resell the asset. When the state shifts from high to low dividend,

price changes reflect the impact of the change in private valuation to the investor

selling the asset but the sale price is higher due to the speculative premium. This

then lowers the percentage price change.

1Essentially, this can be thought of as a continuous time version of the model considered in
Morris(1996). However, it is not a limiting case of that model.
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While the model with Bayesian learners appears to not have tractable solutions,

we can provide tight bounds on the prices using models of overconfidence which do

have tractable solutions. In this case, the bounds show that prices converge to the

investors’ private valuations. The speed with which prices converge to private valua-

tions depends on how much weight speculators put on the data and the magnitude of

initial disagreement. These bounds can also be used to show the prices must converge

to the correct prices in the limit.

More importantly, in the Harrison Kreps model, the speculative premium for

each investor can be thought of as the expected discounted excess consumption for

both investors over the dividend. The consumption market does not clear and the

bond market doesn’t clear. Each investor expects the other investor’s wealth to grow

unboundedly negative and this reflects borrowing to finance expected trading losses.

In this sense the Harrison Kreps prices require that the market for borrowing and

lending doesn’t clear. Although the analysis in Loewenstein and Willard(2006) is

concerned with violations of the law of one price which may or may not occur in

this setting, we obtain a similar conclusion: the speculative premium in the Harrison

Kreps model depends on markets not clearing. Violations of the law of one price can

occur here as well, again due to the fact markets do not clear. This suggests the

importance of examining these types of economies from a different perspective.

When speculators have limited capital many interesting results arise. For most

parameters of our model, speculators can enjoy infinite expected utility when the

other speculator sets the prices. As a result, it is never optimal for speculators to go

bankrupt in equilibrium when they have limited capital. This is suprising because

this occurs even when both investors learn from the data and will “eventually” agree

on the true switching intensity between regimes.

The impact of limited capital provides several other interesting effects not found in

speculative models where speculators have unlimited capital. Prices show pronounced

trends punctuated by unpedictable jumps. Prices tend to be highest when speculators

are all well capitalized. In this case investors have plenty of collateral to put on large

speculative positions. However, as uncertainty unfolds, events tend to favor certain

investors who accumulate more wealth. In contrast to the Harrison Kreps model, the

wealthy investors become the marginal investor who sets prices. However, the less
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wealthy investors do not go bankrupt in our model. This is because prices set by

the wealthy investors reflect very profitable opportunities for speculation. The less

wealthy investors anticipate these prices and optimally reserve some wealth for this

possibility. There are clear cycles of leveraging and de-leveraging in our model.

However, leverage does not perfectly track price levels. In particular, in the good

state leverage is highest well after the peak prices occur. This is because volatil-

ity falls as prices fall beyond the peak. Because volatility gets lower, speculators

can take highly levered positions without defaulting. When disagreements are very

large, volatility can hit zero and we see phenomena similar to the Hart(1975) original

example showing how then asset span can collapse.

There are dramatic effects in the term structure of interest rates. Just after the

peak stock price is attained, the term structure of interest rates is steeply upward

sloping. The term structure can also display clietele effects; the term structure need

not be monotonic. This effect will be present in a model where investors disagree

over rare events. However, learning will tend to smooth out this effect.

A recent literature examines speculation and default and links this activity to

asset prices. Our model can help clarify and refine this analysis. First, speculative

prices do not have any direct link to default. Recall speculators do not default in

our equilibrium. In fact it is the lack of default which supports speculative prices.

Second, our model indicates there could be long periods in which there is seemingly

no speculative activity. During this time one group builds capital which allows pro-

gressively larger positions. At a certain point prices rise dramatically. In effect, when

speculators do not eventually agree the economy will cycle through periods of little

speculative activity followed by a dramatic price rise.

Even though agents never face a binding wealth constraint, in the very long run

only one group of agents will survive. When agents have dogmatic beliefs, the agent

with the correct beliefs survives. In contrast to Blume and Easely(2006), where

all Bayesian learners survive in the limit, I show that in the case of risk neutral

speculators, survival depends on the ratio of the prior densities evaluated at the

truth and the initial wealth distribution. This difference is due to the fact that our

agents have finite marginal utility at zero consumption, while in Blume and Easely

agents have infinite marginal utility at zero consumption.
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The paper is organized as follows. The next section describes the basic model

and analyzes the partial equilibrium Harison Kreps model of speculation. Section 3

analyzes the model when markets clear while Section 4 contains results on long run

survival of agents. Section 5 concludes.

2 A Simple Continous Time Limit of the Harrison

Kreps Model

Here is a model which is a continuous time limit of the discrete time analysis in

Harrison and Kreps(1978). The continuous time limit also offers new insight into the

speculative model of Harrison and Kreps(1978).

Our model begins with a probability space (Ω,F , P ) on which a right continu-

ous counting process Nt is defined. Information is revealed according to the right

continuous filtration {Ft}∞t=0 generated by the counting process.

I consider a market for a a dividend paying asset (one share of stock) and riskless

borrowing and lending. Trade occurs continuously over an infinite horizon. The

dividend paying asset pays an instantaneous dividend at each point in time of δtdt so

the cumulative dividends paid over an interval [0, t] are given by
∫ t

0
δsds. Investors

can also borrow and lend but face short sales constraints on the dividend paying asset.

The evolution of the dividend is described by a simple regime shifting model. For

simplicity assume there are two possible states of the world (0 and 1) at each time. In

state 1, δt(1) = 1 and in state 0, δt(0) = 0. The regime shifts whenever the counting

process Nt jumps.

In the “true” model the switch from State 0 to State 1 and back is governed by a

Poisson process Nt with constant intensity λ. It is standard to assume that N0 = 0.

At each jump the state changes. Well known results on the Poisson process (see

Karlin and Taylor(1975)) give

P [Nt = n] = e−λt (λt)
n

n!
(2.1)

P [Nt odd] =
1

2
− 1

2
e−2λt (2.2)

P [Nt even] =
1

2
+

1

2
e−2λt (2.3)
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There are two investor classes who differ in their prior probability distributions

on λ which we denote by investor class A and investor class B. Each investor class

i = A,B would like to maximize the expected value of discounted payoffs from trade

Ei

[∫ ∞

0

e−γtctdt

]

where ct represents the nonnegative payoffs from a particular trading strategy.

Investors have prior beliefs on λ which are Gamma distributed, that is the prior

probability density for λ for investor class i is given by

kzi
i e

−kiλλzi−1

Γ(zi)
i = A, B (2.4)

where Γ(z) =
∫∞

0
e−ttz−1dt. If kA 6= kB and/or zA 6= zB then agents have hetero-

geneous priors. Each investor class updates their beliefs given the data using Bayes

rule. Thus at time t given Nt = n their posterior belief on λ is given by

Ei[λ|Nt = n] =

∫∞

0
λzie−kiλe−λt (λt)

n

n!
dλ

∫∞

0
λzi−1e−kiλe−λt (λt)

n

n!
dλ

=
zi + n

t+ ki
≡ λi(n, t) (2.5)

In particular

Ei[λ] =
zi

ki
(2.6)

and the process λi(Nt, t) is a P i martingale. The process Nt −
∫ t

0
λi(Ns, s)ds is a P i

martingale.2 λi(n, t) is decreasing in t and increasing in N . After an infinite amount

of data, λi(Nt, t) → Nt

t
→ λ so in the limit agents learn the truth.

Similar calculations give for s ≤ t and n ≥ m

P i[Nt = n|Ns = m] =

∫∞

0
λzi−1e−kiλe−λ(t−s) (λ(t−s))n−m

(n−m)!
e−λs (λs)

m

m!
dλ

∫∞

0
λzi−1e−kiλe−λs (λs)

m

m!
dλ

=
(t− s)n−m

(n−m)!

Γ(n+ zi)

Γ(m+ zi)

(s+ ki)
zi+m

(t+ ki)n+zi
(2.7)

If n is even we have

P i[Nt odd|Ns = n] =
1

2
− 1

2

(s+ ki)
m+zi

(2(t− s) + s+ ki)zi+m
(2.8)

P i[Nt even|Ns = n] =
1

2
+

1

2

(s+ ki)
zi+m

(2(t− s) + s+ ki)zi+m
(2.9)

2To be precise we should write Nt−
∫ t

0
λi(Ns−, s)ds. However, since λ(Nt, t) = λ(Nt−, t) ℓ almost

surely these are the same processes.
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If n is odd

P i[Nt odd|Ns = n] =
1

2
+

1

2

(s+ ki)
m+zi

(2(t− s) + s+ ki)zi+m
(2.10)

P i[Nt even|Ns = n] =
1

2
− 1

2

(s+ ki)
zi+m

(2(t− s) + s+ ki)zi+m
(2.11)

and

P i[Nt odd] =
1

2
− 1

2

kzi
i

(2t+ ki)zi
(2.12)

P i[Nt even] =
1

2
+

1

2

kzi
i

(2t+ ki)zi
(2.13)

and in particular

P i[Nt = n] =
tn

n!

Γ(n+ zi)

Γ(zi)

kzi
i

(t+ ki)n+zi
(2.14)

The parameters zi and ki influence the prior belief on λ and how much weight the

investor puts on the data when updating the beliefs.3 Recall initial expected value of

λ is given by λi(0, 0) =
zi
ki
. Fixing the prior belief λi and setting zi ≡ kiλi and letting

ki → ∞ we obtain the limiting case where the investor puts no weight on the data

and does not learn. The probability distribution is given by

P i[Nt = n] = e−λit
(λit)

n

n!
(2.15)

This specification assumes investors do not update their beliefs no matter how much

data they observe, in other words they have dogmatic beliefs.

On the other hand, letting zi and ki go to zero, the investor puts more weight on

the data and his posterior estimate of λ comes close to the empirical frequency Nt

t
.

Thus our choice of prior beliefs represents a fairly general class of priors which can

accomodate different beliefs as well as differential learning.

We can compute the private valuation of the stock dividends for an investor under

the assumption there is no trade. We denote this private valuation by SA(0, n, t) for

investor class A in state 0, SA(1, n, t) for investor class A in state 1,SB(0, n, t) for

investor class B in state 0, and SB(1, n, t) for investor class B in state 1. Simple

computations give the expected present value of dividends for each investor class in

3zi is the shape parameter and 1
ki

is the scale parameter. The variance of λ is equal to zi
k2

i

.
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each state:

Si(0, n, t) = Ei

[∫ ∞

t

e−γ(s−t)δsds|Nt = n

]

=

∫ ∞

t

e−γ(s−t)P i[Ns − n odd|Nt = n]ds

=

∫ ∞

t

e−γ(s−t)

(

1

2
− 1

2

(t+ ki)
zi+n

(2(s− t) + t+ ki)zi+n

)

ds

=
1

2γ

(

1− (t+ ki)
n+zie

γ(t+ki)

2

(γ

2

)n+zi

Γ(1− zi − n,
γ(t+ ki)

2
)

)

(2.16)

Si(1, n, t) = Ei

[∫ ∞

t

e−γ(s−t)δsds|Nt = n

]

=

∫ ∞

t

e−γ(s−t)P i[Ns − n even|Nt = n]ds

=

∫ ∞

t

e−γ(s−t)

(

1

2
+

1

2

(t+ ki)
zi+n

(2(s− t) + t+ ki)zi+n

)

ds

=
1

2γ

(

1 + (t+ ki)
n+zie

γ(t+ki)

2

(γ

2

)n+zi

Γ(1− zi − n,
γ(t+ ki)

2
)

)

(2.17)

where Γ(z, x) =
∫∞

x
e−ttz−1dt. We note we have the following limits

lim
t→∞

Si(1, n, t) =
1

γ
lim
t→∞

Si(0, n, t) = 0 (2.18)

lim
n→∞

Si(·, n, t) = 1

2γ
(2.19)

When the investors have dogmatic beliefs we can compute the private value of the

dividends as

Si(1, n, t) =

∫ ∞

0

e−γtP i{Nt − n even}dt = λi + γ

γ(γ + 2λi)
(2.20)

Si(0, n, t) =

∫ ∞

0

e−γtP i{Nt − n odd}dt = λi

γ(γ + 2λi)
(2.21)

The following proposition documents how the private valuations compare when

there is learning versus when there is no-learning.

Proposition 2.1. Each individual’s private valuation satisfies

γ + λi(n+ 2, t)

γ(γ + 2λi(n+ 1, t))
> Si(1, n, t) >

λi(n, t) + γ

γ(γ + 2λi(n, t))
(2.22)

λi(n, t)

γ(γ + 2λi(n+ 1, t))
< Si(0, n, t) <

λi(n, t)

γ(γ + 2λi(n, t))
(2.23)
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Proposition 2.1 says in state 1 the private valuation is higher than in the case with

no learning and in state 0 the private valuation is lower than the case with no learning.

This is because while each investor class has a prior belief on the length of time spent

in the current regime, conditional on surviving for that long the investor will revise

their expectations upward. Therefore learning makes the stock more valuable in State

1 and less valuable in State 0 than in the no learning case.

2.1 Trade

When we allow trade in the risky asset, a speculative premium arises in the sense

that agents will pay more than their private valuation because they anticipate selling

the asset in the future for an inflated value. Here we show the equilibrium in the

Harrison Kreps setting, assuming infinitely wealthly investors, or unlimited borrowing

and lending at the continuously compounded rate γ. Define Rt = eγt.

Choice Problem 2.1 (Choice Problem In Harrison Kreps). Given securities endow-

ments θi, choose predictable4 securities holdings θt and αt and adapted consumption

ct to maximize

Ei

[∫ ∞

0

e−γtctdt

]

subject to

dWt = αtdRt + θtdSt + θtδtdt− ctdt

ct ≥ 0, θt ≥ θ,

and

lim
t→∞

Ei
[

e−γtWt

]

= 0

where Wt ≡ αtRt + θtSt and W0 = θiS0.

The next proposition provides a necessary condition for an optimal solution. It

says for an investor to have an optimal solution, the investor’s expected stock return

cannot exceed γ.

Proposition 2.2. A necessary condition for an optimal solution is the process e−γtSt+
∫ t

0
e−γsδsds is a P i supermartingale. Therefore in any Harrison Kreps equilibrium,

there is a speculative premium: S(ι, N, t) ≥ Si(ι, N, t) for each i.

4That is, adapted to the sigma algebra generated by all adapted left continuous processes. This
ensures the portfolio choice is performed prior to the realization of the jumps.
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2.1.1 Harrison Kreps Equilibrium

We now define the equilibrium in the Harrison Kreps model. In this equilibrium the

risk free rate is fixed, agents optimize, and the market for the stock clears.

Definition 2.1. A Harrison Kreps equilibrium is a stock price S(ι, N, t), ι = 0, 1,

such that given this price agents solve the choice problem 2.1 and the market for stock

clears: θAt +θBt = 1 ℓ⊗P i almost surely where θit is the solution to choice problem 2.1.

We begin with a fairly general specification of stock price

dSt = (γSt− − δt − λ
Q
t ∆St)dt+∆StdNt (2.24)

where ∆St ≡ S(1 − ιt, Nt + 1, t) − S(ιt, N, t). The discounted stock price plus dis-

counted cumulative dividend

de−γtSt + e−γtδtdt = e−γt∆St

(

dNt − λ
Q
t dt
)

(2.25)

is a Q martingale under a probability measure for which the counting process Nt has

intensity λ
Q
t . This can be rewritten

de−γtSt + e−γtδtdt = e−γt(λi(Nt, t)− λ
Q
t )∆Stdt+ e−γt∆St (dNt − λi(Nt, t)dt) (2.26)

Recall Nt −
∫ t

0
λi(Ns, s)ds is a P i martingale. The requirement that this is a P i

supermartingale for each i = A,B amounts to

(λi(Nt, t)− λ
Q
t )∆St ≤ 0 i = A,B (2.27)

Market clearing in the stock means

(λi(Nt, t)− λ
Q
t )∆St = 0 (2.28)

for some i. Therefore to clear the stock market we must have

λ
Q
t ≡ λQ(Nt, t) = max

{i}
[λi(Nt, t)] when ∆St > 0 (2.29)

λ
Q
t ≡ λQ(Nt, t) = min

{i}
[λi(Nt, t)] when ∆St < 0 (2.30)

This intuitively says in state 0, the investor who has the quickest estimate of when

the stock will revert to paying a dividend will value the stock highest and in state 1,
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the investor who has the slowest estimate of when the state will change will value the

stock the highest.

It follows that

∂St

∂t
= (γSt−− δt−λ

Q
t ∆St) = ((γ+λ

Q
t )S(ιt, Nt, t)− δt−λ

Q
t S(1− ιt, Nt+1, t) (2.31)

and

S(1, t, n) =
∫

∞

0

e−γsλQ(n, s+t) exp

(

−
∫ s

0

λQ(n, u+ t)du

)(

1

λQ(n, s+ t)
+ S(0, s+ t, n+ 1)

)

ds+ lim
u→∞

e−γuS(0, u+t, n+1)

(2.32)

S(0, t, n) =
∫

∞

0

e−γsλQ(n, s+ t) exp

(

−
∫ s

0

λQ(n, u+ t)du

)

S(1, s+ t, n+ 1)ds+ lim
u→∞

e−γuS(1, u+ t, n+ 1)

(2.33)

In general there can be many solutions to equations (2.32) and (2.33). For example,

for any function M such that ∂M(n,t)
∂t

= −λQ(n, t)(M(n+1, t)−M(n, t)), then one can

add eγtM(n, t) to any solution to produce a new solution. These solutions can thus

have asset pricing bubbles in the sense that the stock price is higher than a portfolio

trading strategy which replicates its dividends.

Proposition 2.3. Assume λA(N, t) > λB(N, t) for all N and t, and define λQ(N, t) =

λA(N, t) in state 0 and λQ(N, t) = λB(N, t) in state 1. Given any nonnegative solution

to equations (2.32) and (2.33) with ∆S(1, N, t) < 0 and ∆S(0, N, t) > 0, these

are potential prices in a Harrison Kreps equilibrium. When θ = 0, the associated

equilibrium trading strategies are for investor class A to buy the stock in state 0 and

hold the riskless asset in state 1 and for investor class B to buy the stock in state 1

and hold the riskless asset in state 0. Any consumption policy for which

Ei

[∫ ∞

0

e−γscisds

]

= θiS(ι, 0, 0) (2.34)

is optimal for these strategies. Moreover, the equilibrium stock price satisfies S(ι, N, t) >

Si(ι, N, t), that is the speculative premium is strictly positive for each i.

2.1.2 Asset Pricing Bubbles

One consequence of not clearing markets is that there are many potential equilibrium

prices due to asset pricing bubbles. However, in absence of these types of bubbles
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we should have 0 ≤ S(·, n, t) ≤ 1
γ
. Therefore it seems natural to focus on bounded

solutions. Harrison Kreps call these prices minimal consistent prices. The importance

of these prices is that the stock price is equal to the expected discounted value of future

dividends under the Q measure. In other words

SQ(ι, N, t) = EQ

[∫ ∞

t

e−γ(s−t)δsds|Ft

]

(2.35)

where EQ is the expectation operator for a probability measure under which the

intensity of the counting process is λQ(N, t). In general for any Harrison Kreps

equilibrium

S(ι, N, t) = EQ

[∫ ∞

t

e−γ(s−t)δsds|Ft

]

+ lim
t→∞

EQ
[

e−γtSt|Ft

]

(2.36)

and defining the bubble component, Bt = St − S
Q
t we have

dB(ι, Nt, t) = {γB(ι, Nt, t)− λQ(Nt, t)(B(1− ι, Nt + 1, t)−B(ι, Nt, t))}dt

+ (B(1− ι, Nt + 1, t)− B(ι, Nt, t))dNt (2.37)

Comparing to the dynamics of a wealth process which invests positive amounts in

the stock and never consumes, we see that one can think of the bubble component

as a strategy which tranfers consumption to “infinity.” We can thus take any of

these wealth processes and add it to SQ to produce another equilibrium price in the

Harrison Kreps model. The next proposition illustrates the consequences of this.

Proposition 2.4. Suppose in the equilibrium described in Proposition 2.3,

lim
t→∞

EQ
[

e−γtSt

]

> 0. (2.38)

Then there is a violation of the law of one price, that is the stock price is higher

than the initial value of a portfolio trading strategy which replicates the stock’s divi-

dends and maintains non-negative wealth. If ∆SQ(1, N, t) < 0 and ∆SQ(0, N, t) > 0,

portfolio strategy does not involve short sales.

The violation of the law of one price requires infinite retrade to support it. An

equilibrium price can violate the law of one price even when there is no disagreement.

This can happen because we are not clearing the market for the riskless asset. Later,

Proposition 2.10 shows the link between violations of the law of one price and lack of

market clearing.
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2.1.3 Minimal Consistent Prices When Investors have Dogmatic Beliefs

In general Equations (2.32) and (2.33) must be solved recursively. In the special

case of no learning we have explicit equations. These expressions are also a useful

benchmark to interpret the case with learning studied in the next section.

Proposition 2.5. Suppose investors have dogmatic beliefs and λA > λB. The mini-

mal consistent equilibrium stock price in the Harrison Kreps model is given by

SQ(0, N, t) =
λA

γ(γ + λA + λB)
(2.39)

SQ(1, N, t) =
λA + γ

γ(γ + λA + λB)
(2.40)

and the equilibrium stock price is independent of N and t.

Stock price percentage jumps are given by

∆SQ(0, N, t)

SQ(0, N, t)
=

γ

λA

(2.41)

∆SQ(1, N, t)

SQ(1, N, t)
= − γ

λA + γ
(2.42)

Stock price volatility is related to the jump magnitudes and of course the “true”

value of the counting process intensity. The jump magnitudes are determined by the

investor with the highest λi. As a result, fixing the mean belief, prices go up and

volatility decreases as beliefs diverge. Notice that this also implies the volatility of

prices is lower when the speculative premium is highest. The intuition for this result

is that as beliefs diverge, a greater portion of the value is due to the resale of the

stock and not fundamentals. This then buffers the stock price from changes in the

fundamentals. Also it is worth noting that these results do not depend on how many

speculators there are and their beliefs; everything is determined by the highest and

lowest λ.

As observed in Harrison and Kreps(1978) the equilibrium gives rise to a speculative

premium for each investor, the equilibrium stock price is higher than each investor’s

private valuation of the dividends: when investors do not learn from the data we have

S(1, N, t)− Si(1, N, t) ≥ λA + γ

γ(γ + λA + λB)
− λi + γ

γ(γ + 2λi)
(2.43)

S(0, N, t)− Si(0, N, t) ≥ λA

γ(γ + λA + λB)
− λi

γ(γ + 2λi)
(2.44)
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Case S(1,0,0) S(0,0,0) ∆ S/S(1) ∆ S/S(0)
SA : λA = 0.6 5.38 4.62 -0.14 0.17
SB : λB = 0.5 5.45 4.55 -0.17 0.20
SQ : λA = 0.6, λB = 0.5 5.83 5 -0.14 0.17
SA : λA = 1 5.23 4.76 -0.09 0.10
SQ : λA = 1, λB = 0.5 6.85 6.25 -0.09 0.10

Table 1: Comparison of Valuation.

This table shows the private vaulations for Investor Class A and B and the Harrison
Kreps equilibrium prices. All cases use γ = 0.1.

with equality when the equilibrium stock price is the minimal consistent price. Table

1 displays the values for the minimal consistent equilibrium prices in various settings.

Remark 2.1. Our results here are easily generalized to the case where δ(1) = H and

δ(0) = L. Then the minimal consistent prices are given by

(H − L)SQ(ι, Nt, t) +
L

γ
(2.45)

where SQ(ι, N, t) the minimal consistent price above.

2.1.4 A Comparative Static Result and Bounds on Minimal Consistent

Prices

In this section we establish a simple comparative static result and use this to bound

the prices in the Harrison Kreps equilibrium.

Proposition 2.6. Assume λA(N, t) ≥ λB(N, t) for all t ≥ t∗ and N ≥ N∗. Let

S̃Q be the minimal consistent prices when investor class A estimates the intensity

to be λ̃A(N, t) and investor class B estimates the intensity to be λ̃B(N, t). Then if

λA(N, t) ≤ λ̃A(N, t) and λB(N, t) ≥ λ̃B(N, t),

S̃Q(ι, N, t) ≥ SQ(ι, N, t) for t ≥ t∗and N ≥ N∗ (2.46)

Proposition 2.6 says that increasing disagreement causes the Harrison Kreps mini-

mal consistent prices to be higher in both states; in terms of the underlying parameters

we have the following corollary.

Corollary 2.1. Assume kA < kB and zA > zB. The minimal consistent prices are

increasing in zA and kB and decreasing in zB and kA.
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We now use Proposition 2.6 to bound the Harrison Kreps equilibrium minimal

consistent prices. To do this we modify our model so that λB(N, t) is as before but

now investor class A believes the true intensity to be

λ̃A(N, t) = A+BλB(N, t) (2.47)

This implies Investor class A believes the true intensity isA+Bλ where λ is distributed
according to a Gamma distribution only now with shape and scale parameters zB
and 1

kB
. In other words, both investor classes agree on the distribution of λ but they

disagree on the values A and B. In this setting the private valuation for investor class
B is as before while the private valuation for investor class A in state 1 is given by

S̃A(1, N, t) =

∫∞
0

γ+A+Bλ
γ(γ+2(Bλ+A))k

zB
B e−kBλλzB−1e−λt (λt)

N

N ! dλ
∫∞
0 k

zB
B e−kBλλzB−1e−λt (λt)

N

N ! dλ

=
1

γ
e

(2A+γ)(kB+t)

2B

(

(2A+ γ)(kB + t)

2B

)zB+N

×
(

A+ γ

2A+ γ
Γ

(

1− zB −N,
(2A+ γ)(kB + t)

2B

)

+
zB +N

2
Γ

(

−zB −N,
(2A+ γ)(kB + t)

2B

))

=
1

γ
e

(2A+γ)(kB+t)

2B

(

(2A+ γ)(kB + t)

2B

)zB+N (
A+ γ

2A+ γ
− 1

2

)

Γ

(

1− zB −N,
(2A+ γ)(kB + t)

2B

)

+
1

2γ
(2.48)

where we use the recursion (see the NIST Digital Library of Mathematical Functions)

Γ(a+ 1, x) = aΓ(a, x) + xae−x (2.49)

A similar exercise gives the private valuation for state 0.

S̃A(0, N, t) =

∫∞

0
A+Bλ

γ(γ+2(Bλ+A))
kzB
B e−kBλλzB−1e−λt (λt)

N

N !
dλ

∫∞

0
kzB
B e−kBλλzB−1e−λt (λt)

N

N !
dλ

=
1

γ
e

(2A+γ)(kB+t)

2B

(

(2A+ γ)(kB + t)

2B

)zB+N

×
(

A

2A+ γ
Γ

(

1− zB −N,
(2A+ γ)(kB + t)

2B

)

+
zB +N

2
Γ

(

−zB −N,
(2A+ γ)(kB + t)

2B

))

=
1

γ
e

(2A+γ)(kB+t)

2B

(

(2A+ γ)(kB + t)

2B

)zB+N (
A

2A+ γ
− 1

2

)

Γ

(

1− zB −N,
(2A+ γ)(kB + t)

2B

)

+
1

2γ
(2.50)

Notice that when A = 0 and B = 1 this is just the private valuation for investor B

and the private valuation satisfies the bounds (see Proposition 2.1)

γ + λ̃A(N + 1, t) + γB

(2A+γ)(t+kB)

γ(γ + 2λ̃A(N + 1, t))
> S̃A(1, N, t) >

γ + λ̃A(N, t)

γ(γ + 2λ̃A(N, t))
(2.51)
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λ̃A(N + 1, t)− γB

(kB+t)(2A+γ)

γ(γ + 2λ̃A(N + 1, t))
< S̃A(0, N, t) <

λ̃A(N, t)

γ(γ + 2λ̃A(N, t))
(2.52)

These inequalities imply that the private valuation in state 1 are always higher then

the case where investor A does not change their estimate of the switching intensity.

However, in state 0, the private valuation is always lower than the case where investor

A does not change their estimate of the switching intensity.

While this model is of independent interest in that it can be thought of as a

model of overconfidence as in Scheinkman and Xiong(2003), the advantage of this

model is it gives explicit closed form solutions. Choosing A = zA−zB
kA

and B = kB
kA

we have λA(N, t) ≤ λ̃A(N, t). This is then useful because from Proposition 2.6 prices

in this set-up provide upper bounds for the prices in the Harrison Kreps equilibrium

with Bayesian learners with priors given by heterogeneous gamma distributions. The

following proposition gives tighter bounds than this.

Proposition 2.7. Assume za ≥ zB and kA ≤ kB. Let A(t, N) = zA−zB
t+kA

and B(t) =
kB+t
kA+t

. Then, if zA ≤ zB + γ(kB + t), the minimal consistent prices in the Harrison

Kreps equilibrium admit the bounds SQ(ι, N, t) ≤ S̃Q(ι, N, t) where

S̃Q(1, N, t) =
1

γ(B(t) + 1)
eX(t,N) (X(t,N))

zB+N
Γ (1− zB −N,X(t,N)) +

B(t)

γ(B(t) + 1)
(2.53)

S̃Q(0, N, t) =
1

γ(1 +B(t))
eX(t,N) (X(t,N))

zB+N

(

A(t,N)− γB(t)

A(t,N) + γ

)

Γ (1− zB −N,X(t,N))+
B(t)

γ(B(t) + 1)
(2.54)

and

X(t, N) =
(A(t, N) + γ)(kB + t)

B(t) + 1
. (2.55)

In addition, these bounds admit the bounds

γ + λ̃A(N + 2, t)

γ(γ + λ̃A(N + 1, t) + λB(N + 1, t))
> S̃Q(1, N, t) >

γ + λ̃A(N, t)

γ(γ + λ̃A(N, t) + λB(N, t))
(2.56)

and

λ̃A(N + 1, t) + A(t,N)−γB(t)
(kB+t)(A(t,N)+γ)

γ(γ + λ̃A(N + 1, t) + λB(N + 1, t))
< S̃Q(0, N, t) <

λ̃A(N, t)

γ(γ + λ̃A(N, t) + λB(N, t))
(2.57)

where λ̃A(N, t) = A(t, N) +B(t)λB(N, t)

The prices S̃ in the proposition do not correspond to an equilibrium price system

but correspond to the time t values of the Harrison Kreps minimal consistent prices
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for different economies where λ̃A(N + M, s + t) = A(t, N) + B(t)λB(N + M, s + t)

for s ≥ 0 and M ≥ 0. The restriction zA ≤ zB + γ(kB + t) is not, strictly speaking,

necessary; if it doesn’t hold, the inequalities in Equations (2.57) reverse and the

prices in the different economies can have some interesting, but unusual, behavior5.

However, in the limit the restriction will hold so we restrict our attention to this case.

Remark 2.2. More generally we could imagine a model of overconfidence where

λA(N, t) = AA + BAλ̂(N, t) and λB(N, t) = AB + BBλ̂(N, t) and λ̂(N, t) = ẑ+N

k̂+t
.

This model has simple closed form expressions for the Harrison Kreps minimal con-

sistent equilibrium prices.

Figure 1 plots the upper bound for the Harrison Kreps equilibrium minimal con-

sistent prices in Equation (2.53) and a lower bound which is the private valuation for

investor class B. These bounds are shown for N = 0, N = 1, and N = 2 versus time.

Figure 2 shows the upper bound in Equation (2.54) on Harrison Kreps minimal con-

sistent prices in state 0 and a lower bound which is the private valuation for investor

class A. The values of λA(0, 0) = 0.6 and λB(0, 0) = 0.5 are chosen for comparison

to the cases in Table 1. The figures show that the speculative premia are lower than

in the case with no learning and diminish rapidly through time. In particular, the

speculative premium in State 1 for Investor B for N = 0 with learning must be less

than 0.311 while in the case with no learning in Table 1 the speculative premium

in the corresponding no learning case it is 0.38. In state 0 the corresponding spec-

ulative premium for Investor A can be no larger than 0.32 while the corresponding

speculative premium in the no learning case is 0.38. As time progresses, we see the

speculative premia diminish rapidly.

Figure 3 displays the percentage difference between the upper bound for the Har-

rison Kreps equilibrium minimal consistent pricesin state 1 in Equation (2.53) and

a lower bound which is the private valuation for investor class B. These bounds are

shown for N = 0, N = 1, and N = 2 versus time. For reference the case with no

learning is also displayed. Figure 4 shows the percentage difference between the upper

5The restriction in the proposition ensures the state 0 prices in the different economies decrease
in t and increase in N . However, the restriction zA − zB ≤ (1 + kA)

γkB

1−γkB

or γkB > 1 is also
sufficient. If this restriction holds and the restriction in the proposition does not, then the prices in
the different economies in state 0 can increase through time and decrease in N . This provides an
illustration of the Keynsian beauty contest; speculators value the asset for the resale.
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Figure 1: Bounds vs. Time

This figure shows the upper bounds in Equation (2.53) on the Harrison Kreps equilibrium
stock price in state 1 and the private valuation for investor class B versus time for N = 0,
N = 1, and N = 2. Parameters: λA(0, 0) = 0.6, λB(0, 0) = 0.5, zA = zB = 1, and γ = 0.1.
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Figure 2: Bounds vs. Time

This figure shows the upper bounds in Equation (2.54) on the Harrison Kreps equilibrium
stock price in state 0 and the private valuation for investor class A versus time for N = 0,
N = 1, and N = 2. Parameters: λA(0, 0) = 0.6, λB(0, 0) = 0.5, zA = zB = 1, and γ = 0.1.
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Figure 3: Percentage Speculative Premium Bounds vs. Time

This figure shows the percentage difference between the upper bounds in Equation (2.53) on
the Harrison Kreps equilibrium stock price in state 1 and the private valuation for investor
class B versus time for N = 0, N = 1, and N = 2. The horizontal line represents the case
with no learning. Parameters: λA(0, 0) = 0.6, λB(0, 0) = 0.5, zA = zB = 1, and γ = 0.1.

bound in Equation (2.54) on Harrison Kreps minimal consistent prices in state 0 and

a lower bound which is the private valuation for investor class A. Again the case with

no learning is included. The values of λA(0, 0) = 0.6 and λB(0, 0) = 0.5 are chosen for

comparison to the cases in Table 1. The figures show that the percentage speculative

premia are lower than in the case with no learning and diminish rapidly through

time. For example the upper bound on the percentage difference between Investor

B’s private valuation and the minimal consistent Harrison Kreps minimal consistent

state 1 equilibrium price fo N = 0 is less than 5.2 % while in the no learning case it

is approximately equal to 7 %. The corresponding numbers in state 0 for Investor A

are 7.78 % and 8.3 %.

By taking limits in Equations (2.32) and (2.33) we can also deduce the following

limits

lim
t→∞

SQ(1, N, t) =
1

γ
lim
t→∞

SQ(0, N, t) = 0 (2.58)

lim
N→∞

SQ(ι, N, t) = lim
N→∞

SQ(1− ι, N, t) (2.59)

Our final result in this section is to show that the Harrison Kreps minimal consistent

prices converge to the true value.

Proposition 2.8. When both investors learn, the minimal consistent Harrison Kreps

equilibrium prices converge to the true values, that is almost surely (PA or PB) we
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Figure 4: Percentage Speculative Premium Bounds vs. Time

This figure shows the percentage difference between the upper bounds in Equation (2.54) on
the Harrison Kreps equilibrium stock price in state 0 and the private valuation for investor
class A versus time for N = 0, N = 1, and N = 2. The horizontal line is the no learning
case. Parameters: λA(0, 0) = 0.6, λB(0, 0) = 0.5, zA = zB = 1, and γ = 0.1.

have

lim
t→∞

SQ(1, Nt, t) =
γ + λ

γ(γ + 2λ)
(2.60)

lim
t→∞

SQ(0, Nt, t) =
λ

γ(γ + 2λ)
(2.61)

2.2 Analysis of Leverage

We now examine how not clearing the market for the riskless asset impacts the Har-

rison Kreps equilibrium. Aggregating each agents budget constraint and using the

fact that we clear the stock market θAt + θBt = 1 gives

d(WA
t +WB

t ) =
{

γ
(

αA
t + αB

t

)

eγt + δt − cAt − cBt
}

dt+ dSt (2.62)

Using the fact that WA
t +WB

t − St = (αA
t + αB

t )e
γt gives

d
(

αA
t + αB

t

)

eγt =
{

γ
(

αA
t + αB

t

)

eγt + δt − cAt − cBt
}

dt (2.63)

Which then gives

WA
t +WB

t − St =
(

αA
t + αB

t

)

eγt = eγt
∫ t

0

e−γs
{

δs − cAs − cBs
}

ds (2.64)

This expression is similar to the analysis in Loewenstein and Willard(2006) and links

the present value of non-clearing in the consumption market to the lack of clearing

in the riskless market, given by WA
t +WB

t − St.
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There are three probability measures of interest,speculator A’s probability mea-

sure, PA, speculator B’s probability measure, PB, and the pricing measure, Q. While

each speculator’s expected discounted wealth satisfies the tranversality condition un-

der their probability measure, it is not guaranteed to satisfy the tranversality con-

dition under the other two measures. In the following propositions, we choose con-

sumption strategies so that each speculator’s expected discounted wealth satisfies the

tranversality condition in their own measure as well as the Q measure.

Proposition 2.9. In any Harrison Kreps equilibrium, when θ = 0, for any deter-

ministic nonnegative cAt and cBt which satisfy
∫ ∞

0

e−γtcitdt = θiS(ι, 0, 0) (2.65)

the speculative premium for each investor is given by the expected present value of the

excess consumption, that is for i = A,B

S(ι, 0, 0)− Si(ι, 0, 0) = Ei

[∫ ∞

0

e−γs
{

cAs + cBs − δs
}

ds

]

= lim
t→∞

Ei
[

e−γt
(

St −WA
t −WB

t

)]

= Ei

[∫ ∞

0

e−γsθjs(λj(Ns, s)− λi(Ns, s))∆Ssds

]

+ lim
t→∞

Ei
[

e−γtSt

]

(2.66)

In particular, when λA(N, t) > λB(N, t) for all N and t, investor i’s expected present

value of investor j’s trading losses are financed from violating the transverality con-

dition under P i,

lim
t→∞

Ei
[

e−γtW
j
t

]

= Ei

[∫ ∞

0

e−γsθjs(λi(Ns, s)− λj(Ns, s))∆Ssds

]

< 0. (2.67)

These findings say, restricting attention to deterministic consumption choices, any

speculative premium for investor i is the expected present value of the non-clearing

in the consumption market which is exactly equal to the asymptotic expected present

value of the amount by which the riskless market does not clear by. Furthermore,

using the tranversality condition on W i, this asymptotic non-clearing in the riskless

asset market can be written

lim
t→∞

Ei[e−γtSt]− lim
t→∞

Ei[e−γtW
j
t ] (2.68)

which attributes nonclearing in the riskless market to 1) a possible violation of the

law of one price and 2) investor j’s expected trading losses.
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When the stock price is the minimal consistent price the speculative premium is

generated by the non-clearing in the consumption market which is in turn investors i’s

expectation of investor j’s trading losses. Moreover, from each investor’s perspective,

they expect the other investor’s wealth to grow unboundedly negative to finance their

expected trading losses.

When arbitrary budget feasible optimal consumption choices are allowed, then

the equality in Equation (2.67) may not hold and the speculative premium is given

by

S(ι, 0, 0)− Si(ι, 0, 0) = Ei

[∫ ∞

0

e−γs
{

cAs + cBs − δs
}

ds

]

+ lim
t→∞

Ei
[

e−γtW
j
t

]

− Ei

[∫ ∞

0

e−γsθjs(λi(Ns, s)− λj(Ns, s))∆Ssds

]

.

Again, the speculative premium is driven by non-clearing; in this case it contains

an additional term to reflect asymptotic non-clearing of the riskless market less the

amount required to finance expected trading losses.

Interestingly, any asset pricing bubble (a violation of the law of one price) is

supported entirely by the riskless market. The next proposition deals with violations

of the law of one price. A similar observation is in Loewenstein and Willard(2006).

Proposition 2.10. In any Harrison Kreps equilibrium, when θ = 0, for any deter-

ministic, nonegative cAt and cBt which satisfy

∫ ∞

0

e−γtcitdt = θiS(ι, 0, 0) (2.69)

under the Q measure we have

S(ι, 0, 0)− SQ(ι, 0, 0) = EQ

[∫ ∞

0

e−γs
{

cAs + cBs − δs
}

ds

]

= lim
t→∞

EQ
[

e−γt
(

St −WA
t −WB

t

)]

(2.70)

where SQ is the minimal consistent price. The bubble component is driven entirely by

non-clearing in the consumption and riskfree markets.

While one might think that the transversality conditions would rule out an asset

pricing bubble, this is not the case. In fact, our restriction to deterministic consump-

tion plans ensures the investorss’ wealth processes satisfy the transversality conditions
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under the Q measure. However, the non-clearing in the riskless asset market does not

satisy these conditions. Because investors have a source of wealth from the asymptotic

non-clearing at the horizon, they can consume more.

Proposition 2.10 says a violation of the law of one price can be supported by lack

of clearing in the consumption market. This can occur even if speculators share a

common prior, but would have to be suppported by infinite retrade. In fact, ruling

out this possibility by insisting markets clear would potentially rule out the possi-

bility of any speculative premium at all. These findings suggest the Harrison Kreps

equilibrium might be appropriate for understanding very small isolated markets but

for explaining general market conditions, one would require an explanation of the

resources outside the model. This suggests we examine these economies from other

perspectives.

3 Speculation with Limited Capital

A funny feature of the above model is that speculators can lose a lot. The optimal

solution in equilibrium will involve negative wealth, in which case speculators may

choose to optimally default. Moreover, the equilibrium prices above are the same

regardless of whether there are no short sales involved or if a large but finite amount

of short sales are permitted. In this section we examine an alternative model in which

markets clear and speculators are optimally not defaulting. We begin with the choice

problem. We do not prohibit short sales explicitly. However, we explicitly constrain

wealth to be nonnegative which will implicitly limit short sales. We show in a later

section even if investors are allowed to have some negative wealth (and hence be able

to walk away from their debts), they will optimally choose not to do so in equilibrium.

The restriction to nonnegative wealth can be thought of as a margin constraint which

perfectly anticipates price changes.

Once again we postulate candiate equilibrium prices only now we allow for a

possibly stochastic locally riskless interest rate which is a function of Nt and t; in

other words rt ≡ r(Nt, t). We suppose the stock price is given by

dSt = (rtSt− − δt − λ
Q
t ∆St)dt+∆StdNt (3.71)

The equity premium for individual i is given by
(λi(Nt,t)−λ

Q
t )∆St

St−
which can be positive,
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negative or 0.

Let Rt = e
∫ t
0 rsds.

Choice Problem 3.1 (Choice Problem with Limited Resources). Given securities

endowments θi, choose predictable securities holdings θt and αt and adapted consump-

tion ct to maximize

Ei

[∫ ∞

0

e−γtctdt

]

subject to

dW i
t = αtdRt + θtdSt + θtδtdt− ctdt

and

Wt ≥ 0 ⇒ θt∆St ≥ −Wt−

and ct ≥ 0 where Wt = αtRt + θtSt and W0 = θiS0.

Proposition 3.1. The value function is given by

V i(W,N, t) = Whi(N, t) (3.72)

The function hi(N, t) ≥ 1 satisfies

∂hi(N, t)

∂t
+ hi(N, t)(rt − γ − λi(N, t)) + λQ(N, t)hi(N, t) = 0 (3.73)

Moreover,

λi(N, t)hi(N + 1, t) ≤ λQ(N, t)hi(N, t) (3.74)

with equality when θt∆St > −Wt. The optimal consumption satisfies

ct(1− hi(N, t)) = 0 (3.75)

and when hi(Nt, t) = 1, rt + λQ(N, t) = γ + λi(Nt, t), ℓ× P i almost surely.

Corollary 3.1. If an optimal solution does not involve default we have e−γthi(Nt, t)St+
∫ t

0
e−γshi(Ns, s)δsds and e

∫ t
0 (rs−γ)dshi(Nt, t) are P i martingales. Therefore if ∆St 6= 0

λQ is unique and we have

e
∫ t
0 (rs−γ)dshi(Nt, t)

hi(0, 0)
=

dQ

dP i
|t ≡ M i

t (3.76)
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Moreover, if rt ≤ γ, hi(Nt, t) is a P i submartingale and if rt = γ, hi(Nt, t) is a P i

martingale. Therefore, if rt = γ ∀t ≥ τ , if hi(Nτ , τ) = 1 then hi(Nt, t) = 1 for all

t ≥ τ . Moreover, we have

W i(0) =
1

hi(0, 0)
Ei

[∫ ∞

0

e−γtct1{hi(Nt,t)=1}dt

]

= EQ

[∫ ∞

0

e−
∫ t
0 rsdsct1{hi(Nt,t)=1}dt

]

= Ei

[∫ ∞

0

e−
∫ t
0 rsdsM i

t ct1{hi(Nt,t)=1}dt

]

(3.77)

The function hi impounds the future speculative opportunities. It represents the

value of one unit of wealth optimally invested, or the marginal utility of wealth. In

an i.i.d. framework, hi = 1 or there is no optimal solution. However, it is important

to emphasize that when rt ≤ γ, then hi(Nt, t) is a submartingale. In effect, the

submartingale property lowers the discount rate on future wealth to reflect future

speculative opportunities. This is an important observation in our next section.

Remark 3.1. The optimal policy involves local indeterminancy in the portfolio and

consumption choice. It is important to check the transversality condition

lim
t→∞

Ei[e−γthi(Nt, t)Wt] = 0 (3.78)

which follows from (3.77).

3.1 Equilibrium

Our definition of equilibrium is standard.

Definition 3.1. An equilibrium is an interest rate r(N, t) and stock price S(ι, N, t)

such that agents solve choice problem 3.1 and the consumption market, the riskless

asset market, and the stock market all clear, that is θAt + θBt = 1, cAt + cBt = δt, and

αA
t + αB

t = 0, ℓ⊗ P i almost surely where cit, θ
i
t and αi

t solve problem 3.1.

Many models of speculation assume either infinitely wealthy investors or unlimited

borrowing at a fixed riskless rate. In addition, these models either use exponential

utility or risk neutral preferences. These assumptions rule out wealth effects and this

implies any individual can be the marginal buyer of the stock. However, if speculators
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face lower bounds on wealth, even these preferences will give rise to wealth effects.

The next section examines equilibrium restrictions which are only implied by market

clearing.

3.1.1 Leverage and Collateral

In this section we explore equilibrium limits and speculation and leverage given market

clearing.

Proposition 3.2. In any equilibrium where markets clear, 0 ≤ WA ≤ SA and 0 ≤
WB ≤ SB. As a result,

W i
t− + θit∆St ≥ St − S

j
t (3.79)

In particular, if W j
t− > S

j
t and ∆St < 0, then j is the marginal buyer of the stock.

The importance of this result is that it relies only on market clearing. Equa-

tion (3.79) indicates that if there is a speculative premium when the reqime shifts,

then the wealth constraint for agent i cannot bind for any agent. In fact, margin

requirements can be tighter than simply θ∆S > −Wt− whenever a speculative pre-

mium persists. This proposition also indicates that when agent i is not wealthy and

∆S < 0, then investor j must be the marginal buyer of the stock. This contrasts with

the Harrison Kreps equilibrium where the marginal buyer is alway the buyer with the

highest valuation.

3.1.2 Default

Although our investors have finite marginal utility for zero consumption, they will not

default in equilibrium if their disagreements are persistent enough. This is because if

they default, then the remaining investors set prices. Given these prices, an investor

with different beliefs can enjoy very large utility. Therefore rather than default, an

investor will optimally set a tiny amount of capital to speculate at very favorable

prices. But this then says default cannot be part of the equilibrium. This is suprising

because this is true even when investors learn and after an infinite amount of data

both learn the true parameter λ. One might imagine that the gains from staying

solvent would diminish through time. The next proposition gives the precise result.
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Proposition 3.3. Suppose kB ≥ kA and zB < zA (so that λA(N, t) > λB(N, t) for

all N and t) or investors have dogmatic beliefs. In equilibrium, the wealth constraint

does not bind for either investor.

Remark 3.2. In the case zA = zB and kA < kB, the proof of Proposition 3.3 still

implies investor A will have infinite expected utility when facing prices set by investor

B. However, the proof does not imply investor class B will have infinite expected utility

when facing prices set by investor A. Nevertheless, our construction of the equilibrium

indicates in this case investor class B will still not have a binding wealth constraint;

the value of staying alive exceeds any possible benefit of taking a highly leveraged

position which leads to default in some states.

To get an equilibrium with potential default, one could assume investors have a

finite, deterministic horizon. However, in this case prices will be lower. Any retrade

value will vanish as the horizon approaches and investors might optimally choose to

default.

It is also worth noting that this same propostion can be applied in various other

settings.

3.1.3 Equilibrium Prices

We now characterize equilibrium in our economy. We first describe an important

stochastic process for describing the equilibrium is the change of measure from PA

to PB restricted to time t. This is the random variable Zt such that for any Ft

measurable random variable x, EB[x] = EA[Ztx]. In the case where investors learn

this is given by

Zt =

Γ(Nt+zB)
Γ(zB)

k
zB
B

(t+kB)Nt+zB

Γ(Nt+zA)
Γ(zA)

k
zA
A

(t+kA)Nt+zA

(3.80)

and when investors have dogmatic beliefs

Zt = e(λA−λB)t

(

λB

λA

)Nt

(3.81)

In both cases Zt satisfies the stochastic differential equation

dZt =
λB(Nt−, t)− λA(Nt−, t)

λA(Nt−, t)
Zt− (dNt − λA(Nt−, t)dt) Z0 = 1 (3.82)

Our first result derives the state price density and interest rate for the equilibrium.
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Proposition 3.4. Suppose λA(N, t) > λB(N, t) for all N and t. The state price

density for investor A is given by

ρAt = e−γtmax (η, (1− η)Zt)

max(η, 1− η)
(3.83)

where η is the solution to

θAEA

[∫ ∞

0

ρAt δtdt

]

= EA

[∫ ∞

0

ρAt δt1{η>(1−η)Zt}dt

]

. (3.84)

The equilibrium interest rate is given by

rt =











γ If η > (1− η)Zt−

γ + λB(Nt, t)− ηλA(Nt,t)
(1−η)Zt

If (1− η)Zt− > η and λB(Nt,t)
λA(Nt,t)

(1− η)Zt− < η

γ If (1− η)Zt− > η and λB(Nt,t)
λA(Nt,t)

(1− η)Zt− > η

(3.85)

The equilibrium λQ is given by

λ
Q
t =











λA(Nt, t) If η > (1− η)Zt−
ηλA(Nt,t)
(1−η)Zt

If (1− η)Zt− > η and λB(Nt,t)
λA(Nt,t)

(1− η)Zt− < η

λB(Nt, t) If (1− η)Zt− > η and λB(Nt,t)
λA(Nt,t)

(1− η)Zt− > η

(3.86)

In contrast to the Harrison Kreps model where the time stock prices can be thought

of an investor’s private valuation plus the option to resell the asset, in this setting at

time t when hi(N, t) = 1, future consumption is priced as investor i’s private valuation

of the consumption plus the option to resell consumption. Notice the riskfree rate

satisfies the bounds γ + λB(Nt, t) − λA(Nt, t) ≤ rt ≤ γ. The price of risk satisfies

λB(Nt, t) ≤ λ
Q
t ≤ λA(Nt, t).

There are three important regions for understanding equilibrium pricing. When

η > (1−η)Zt, λ
Q
t = λA(Nt, t) and rt = γ. In this region, there is no equity premium for

investor class A, but investor class B has a risk premium of (λB(Nt, t)−λA(Nt, t))
∆S
S
.

This is positive when ∆S < 0 and negative when ∆S > 0. In this region investor

class A consumes the dividend, while investor class B saves and builds capital.

The next region is when (1− η)Zt > η > (1− η)Zt
λB(Nt,t)
λA(Nt,t)

. In this region, rt < γ

and both investors have a non-zero equity premium. Investor class B consumes the

dividend and investor class A saves.

The final region is when (1 − η)Zt
λB(Nt,t)
λA(Nt,t)

. In this region, rt = γ and investor A

has a non-zero equity premium while investor B does not. In this region investor class

B consumes the dividend and investor class A saves.
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Intuitively, these regions correspond when A dominates the wealth distribution,

a transition region, and when B dominates the wealth disribution. If the economy

begins in the first region, then as time passes this tends to favor investor class B. If

the state doesn’t change then the economy will transition through the three regions.

However, changes in state lower (1 − η)Zt so state transitions will tend to bring the

economy back to region 1. State transitions favor investor class A so state transitions

tend to result in A dominating the wealth distribution.

The next proposition summarizes asset prices when all markets clear.

Proposition 3.5. Suppose λA(Nt, t) > λB(Nt, t). Equilibrium prices are given by

S(1, Nt, t) =
η

max(η, (1− η)Zt)

∞
∑

j=0

∫ t∗(2j,Zt,t)

0
e−γsPA{Ns+t = Nt + 2j|Nt}ds

+
(1− η)Zt

max(η, (1− η)Zt)

∞
∑

j=0

∫ ∞

t∗(2j,Zt,t)
e−γsPB{Ns+t = Nt + 2j|Nt}ds (3.87)

S(0, Nt, t) =
η

max(η, (1− η)Zt)

∞
∑

j=0

∫ t∗(2j+1,Zt,t)

0
e−γsPA{Ns+t = Nt + 2j + 1|Nt}ds

+
(1− η)Zt

max(η, (1− η)Zt)

∞
∑

j=0

∫ ∞

t∗(2j+1,Zt,t)
e−γsPB{Ns+t = Nt + 2j + 1|Nt}ds (3.88)

where t∗(j, Z, t) is the solution to

ηPA{Nt∗(j,Z,t)+t = Nt + j|Nt} = (1− η)ZPB{Nt∗(j,Z,t)+t = Nt + j|Nt} (3.89)

if a nonnegative solution exists and zero otherwise.

The next proposition gives the equilibrium wealth processes.

Proposition 3.6. The equilibrium wealth process for investor class B is given by

WB(1, Nt, t) =
(1− η)Zt

max(η, (1− η)Zt)

∞
∑

j=0

∫ ∞

t∗(2j,Zt,t)

e−γsPB{Ns+t = Nt+2j|Nt}ds (3.90)

WB(0, Nt, t) =
(1− η)Zt

max(η, (1− η)Zt)

∞
∑

j=0

∫ ∞

t∗(2j+1,Zt,t)

e−γsPB{Ns+t = Nt + 2j|Nt}ds

(3.91)

The equilibrium wealth process for investor class A can be obtained from market clear-

ing:

WA(·, N, t) = S(·, N, t)−WB(·, N, t) (3.92)
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When investors learn from the data, this affects portfolio choice and, in turn,

equilibrium stock price dynamics. It is convenient to define the functions

fA(1, Nt, t) =
∞
∑

j=0

∫ t∗(2j,Zt,t)

0

e−γs
(

λA(Nt, t)− λA(Nt + 2j, s+ t)
)

PA{Ns+t = Nt+2j|Nt}ds

(3.93)

fA(0, Nt, t) =
∞
∑

j=0

∫ t∗(2j+1,Zt,t)

0

e−γs
(

λA(Nt, t)− λA(Nt + 2j + 1, s+ t)
)

PA{Ns+t = Nt+2j+1|Nt}ds

(3.94)

fB(1, Nt, t) =
∞
∑

j=0

∫ ∞

t∗(2j,Zt,t)

e−γs
(

λB(Nt, t)− λB(Nt + 2j, s+ t)
)

PB{Ns+t = Nt+2j|Nt}ds

(3.95)

fB(0, Nt, t) =
∞
∑

j=0

∫ ∞

t∗(2j+1,Zt,t)

e−γs
(

λB(Nt, t)− λB(Nt + 2j + 1, s+ t)
)

PB{Ns+t = Nt+2j+1|Nt}ds

(3.96)

These functions are identically 0 when investors have dogmatic beliefs. However,

when investors learn from the data they play a role in the equilibrium dynamics.

Corollary 3.2.

∂S(·, N, t)

∂η
=

{

− 1
η(1−η)Z

WB(·,N,t)
λB(N,t)−λA(N,t)

If η > (1− η)Z
1

η(1−η)Z
WA(·,N,t)

λB(N,t)−λA(N,t)
If (1− η)Z > η

(3.97)

As a function of η, stock price is highest when η = (1− η)Z. In addition, when η ↑ 1

the stock price goes to A’s private valuation and as η ↓ 0 the stock price goes to B’s

private valuation.

∂S(·, N, t)

∂t

= (λA(N, t)−λB(N, t))WB(·, N, t)1{(1−η)Zt<η}+(λB(N, t)−λA(N, t))WA(·, N, t)1{(1−η)Zt>η}

+
η

max(η, (1− η)Zt)
fA(·, N, t) +

(1− η)Zt

max(η, (1− η)Zt)
fB(·, N, t)

=

(

rt + λ
Q
t − γ − λA(N, t)

WA(·, N, t)

S(·, N, t)
− λB(N, t)

WB(·, N, t)

S(·, N, t)

)

S(·, N, t)

+
η

max(η, (1− η)Zt)
fA(·, N, t) +

(1− η)Zt

max(η, (1− η)Zt)
fB(·, N, t) (3.98)

Corollary 3.2 indicates the stock price will unambiguously increase in η when

η > (1− η)Zt and decrease in η when (1− η)Zt > η. Thus, the maximal stock price

as a function of η is when η = (1− η)Zt although the stock fails to be differentiable
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at this point. The maximal price is above both investors’ private valuations as in the

Harrison Kreps model. However, it is possible for the price to be below an investor’s

private valuation if the investor has low wealth.

Figure 5 shows the equilibrium stock price versus time when investors have dog-

matic beliefs. The upper line shows how the stock price moves in state 1 while the

bottom line shows the resulting stock price when the state changes from one to zero.

Notice the magnitude of the price change is the difference between the two lines. The

magnitude of the changes grows until the peak, then shrinks, and then grows again.

This will be examined in more detail later, but this behavior is important to under-

stand how leverage and prices are linked. Figure 6 shows leverage in the two regimes.

Prior to the peak, as investor class B builds capital he can take more leverage in

state 1 despite the increase in volatility. However, in State 1 leverage peaks well after

the peak prices. This is because the volatility shrinks after the peak prices; lowered

volatility allows bigger leverage.

Figure 7 shows the stock price versus time but for dogmatic beliefs and a larger

disagreement. Here we see the stock price volatility can hit zero and even move so

that when the dividend drops the stock price goes up. As predicted from Corollary 3.2

the rate of change is higher when investors have larger disagreements. Figure 8 shows

leverage in state 1. When the stock price volatility vanishes, the the speculators take

infinite positions. This is similar to the non-existance example in Hart(1975) but

here because this only occurs on a zero measure set the stochastic integrals describing

trading gains are defined. It is a bit of an abstraction to say equilibrium exists here,

however.

Figure 9 shows the stock price as a function of time when we start in state 1

and investors learn. The top line is the stock price in state 1 and the bottom line

illustrates the stock price when the state shifts to state 0. Stock price jumps are

increasing as time passes. Here there are two effects: 1) as time passes, investors

tend to update their beliefs and 2) their beliefs tend to agree more. Figure 10 shows

leverage versus time in state 1. Not suprisingly, leverage decreases as disagreement

decreases.

Remark 3.3. We can easily generalize this to the case where the stock pays a dividend
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Figure 5: Price vs. Time

This figure shows the equilibrium stock price versus time for N = 0 and N = 1 when
investors do not learn. Parameters: λA(N, t) = 0.6, λB(N, t) = 0.5, γ = 0.1.
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Figure 6: Leverage vs.Time

Parameters: λA(N, t) = 0.6, λB(N, t) = 0.5, γ = 0.1.

δt(1) = H and δt(0) = L. The stock price in state 1 will be

HS(1, N, t) + LS(0, N, t) (3.99)

and in state 0 the stock price will be

LS(1, N, t) +HS(0, N, t) (3.100)

Figures 11, 12, 13, and 14 show how asset prices in both states at time 0 behave

as a function of η for small disagreement and larger disagreement. When η is large,

Investor class A dominates the wealth distribution and prices reflect A’s private val-

uation. When η goes to 1
2
prices go up to the maximal value which greatly exceeds

each individuals private valuation and when η gets small, prices reflect Investor class

B’s private valuation. Loosely speaking, as more time is spent in each state, prices

will tend to move in the direction of η getting smaller since Investor class A always
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Figure 7: Price vs. Time

This figure shows the equilibrium stock price versus time for N = 0 and N = 1 when
investors do not learn. Parameters: λA(N, t) = 1.0, λB(N, t) = 0.5, γ = 0.1.
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Figure 8: Leverage vs.Time

Parameters: λA = 1.0, λB = 0.5, γ = 0.1.
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Figure 9: Stock Price versus Time.

This figure shows the stock price versus time with learning for N = 0 and N = 1. Parame-
ters: zA = zB = 1, λA(0, 0) = 0.6, λB(0, 0) = 0, 5, and γ = 0.1.
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Figure 10: Leverage versus time in State 1.

This figure shows leverage versus time when investors learn for N = 0. Parameters: zA =
zB = 1, λA(0, 0) = 0.6, λB(0, 0) = 0, 5, and γ = 0.1.
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Figure 11: Stock Price in State 1 as a Function of η.
This figure shows how the stock price varies with η in state 1. Parameters: λA = 0.6,
λB = 0.5, γ = 0.1.

estimates the state shifting faster than Investor class B, the more time spent in a

given state tends to shift the wealth distribution in B’s favor.

Figures 15, and 16 show how asset prices in both states at time 0 behave as a

function of η for the case of learning. When η is large, Investor class A dominates the

wealth distribution and prices reflect A’s private valuation. When η goes to 1
2
prices

go up to the maximal value which greatly exceeds each individuals private valuation

and when η gets small, prices reflect Investor class B’s private valuation. Loosely

speaking, as more time is spent in each state, prices will tend to move in the direction

of η getting smaller since Investor class A always estimates the state shifting faster

than Investor class B, the more time spent in a given state tends to shift the wealth

distribution in B’s favor.
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Figure 12: Stock Price in State 0 as a Function of η.
This figure shows how the stock price varies with η in state 0. Parameters: λA = 0.6,
λB = 0.5, γ = 0.1.
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Figure 13: Stock Price in State 1 as a Function of η.
This figure shows how the stock price varies with η in state 1 when agents have larger
disagreement. Parameters: λA = 1.0, λB = 0.5, γ = 0.1.
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Figure 14: Stock Price in State 0 as a Function of η.
This figure shows how the stock price varies with η in state 1 when agents have larger
disagreement. Parameters: λA = 1.0, λB = 0.5, γ = 0.1.
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Figure 15: Stock Price in State 1 versus η.
This figure shows stock price in state 1 for N = 0 versus η. Parameters: zA = zB = 1,
λA(0, 0) = 0.6, λB(0, 0) = 0, 5, and γ = 0.1.
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Figure 16: Stock Price in State 0 versus η.
This figure shows stock price in state 0 for N = 0 versus η. Parameters: zA = zB = 1,
λA(0, 0) = 0.6, λB(0, 0) = 0, 5, and γ = 0.1.
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3.1.4 Equilibrium Stock Price Volatility

In this section, we look at the equilibrium stock price changes.

Proposition 3.7. Equilibrium percentage stock price jumps are given by

∆S(·, N, t)

S(·, N, t)
≡ S(1− ·, N + 1, t)− S(·, N, t)

S(·, N, t)

=

(

γ + λA(N, t)

λ
Q
t

− 1

)

WA(·, N, t)

S(·, N, t)
+

(

γ + λB(N, t)

λ
Q
t

− 1

)

WB(·, N, t)

S(·, N, t)
− δ(·)

λ
Q
t S(·, N, t)

− η

λA(N, t)max(η, (1− η)Zt
λB(N,t)
λA(N,t)

)

fA(·, N, t)

S(·, N, t)
− (1− η)Zt

λA(N, t)max(η, (1− η)Zt
λB(N,t)
λA(N,t)

)

fB(·, N, t)

S(·, N, t)

(3.101)

Proposition 3.7 indicates there are three distinct regions to analyze to understand

the equilibrium stock price jumps. When η > (1−η)Z percentage stock price changes

unambiguously decrease as η decreases. When (1 − η)Z λB

λA
> η, percentage stock

price changes also unambiguously decrease as η decreases. When η ↓ 0, percentage

stock price changes approach those of an economy populated by investors with B’s

beliefs and when η ↑ 1 percentage stock price changes approach those of an economy

populated by investors with A’s beliefs. In the middle region, where (1 − η)Z λB

λA
<

η < (1 − η)Z, the percentage stock price changes increase as η decreases. This is

caused by the fact that when the state changes in this region, the marginal buyer for

consumption also changes.

Figures 17, 18, 19, and 20 show the stock price changes as a function of η for a

moderate disagreement and a larger disagreement.

Figures 21 and 22 show the percentage change in stock price versus η in states

1 and 0 for N = t = 0 when investors learn. The pattterns are similar to the case

where investors don’t learn because the effects of learning show up when we vary N

and t.

In general, we see that stock price volatility can be quite different depending on

the equilibrium wealth distribution.

3.1.5 Analysis of Stock Price Changes with Dogmatic Beliefs

To get some insight into how the stock price changes behave we now analyze these

changes in the three regions. In the first region when η > (1− η)Zt stock price jumps
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Figure 17: Stock Price Percentage Change in State 1 as a Function of η.
This figure shows how ∆S

S
varies with η in State 1 when investors have dogmatic beliefs.

Parameters: λA = 0.6, λB = 0.5, γ = 0.1.
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Figure 18: Stock Price Percentage Change in State 0 as a Function of η.
This figure shows how ∆S

S
varies with η in State 0 when investors have dogmatic beliefs.

Parameters: λA = 0.6, λB = 0.5, γ = 0.1.
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Figure 19: Stock Price Percentage Change in State 1 as a Function of η.
This figure shows how ∆S

S
varies with η in State 1 when agents have larger disagreement

and dogmatic beliefs. Parameters: λA = 1.0, λB = 0.5, γ = 0.1.
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Figure 20: Stock Price Percentage Change in State 0 as a Function of η.
This figure shows how ∆S

S
varies with η in State 0 when agents have larger disagreement

and dogmatic beliefs. Parameters: λA = 1.0, λB = 0.5, γ = 0.1.
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Figure 21: Percentage change in Stock Price in State 1 versus η.
This figure show the percentage change in stock price in state 1 when investors learn for
N = 0 versus η. Parameters: zA = zB = 1, λA(0, 0) = 0.6, λB(0, 0) = 0, 5, and γ = 0.1.
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Figure 22: Percentage change in Stock Price in State 0 versus η.
This figure shows the percentage change in stock price in state 0 when investors learn for
N = 0. Parameters: zA = zB = 1, λA(0, 0) = 0.6, λB(0, 0) = 0, 5, and γ = 0.1.
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are unambiguously negative in state 1. We have

∆S =

(

γ + λA

λA

− 1

)

WA+

(

γ + λB

λA

− 1

)

WB− 1

λA

<

(

γ + λA

λA

− 1

)

(WA+WB)− 1

λA

=
γS

λA

− 1

λA

< 0. (3.102)

In addition we can see that the stock price jumps must become more negative as B’s

wealth increases, in other words as η → (1− η)Zt.

Howevever, large disagreements might cause stock price jumps to be positive when

η < (1− η)Zt. That is the dividend drops, the stock price goes up. This occurs due

to an interest rate effect. When (1− η)Zt
λB

λA
> η we have

∆S =

(

γ + λA

λB

− 1

)

WA +

(

γ + λB

λB

− 1

)

WB − 1

λB

=
γWB − 1

λB

+
γ + λA − λB

λB

WA (3.103)

So if WA is large, then the stock price jump can be positive. But as η → 0, the

stock price approaches B’s private valuation so for small values of η, WA is small

and the stock price jump must be negative in state 1. For intermediate values the

magnitude of the stock price jump can be positive or negative in state 1 depending

on the magnitude of disagreement.

In state 0, stock price jumps are unambiguously positive when (1 − η)Zt
λB

λA
> η.

We have

∆S =

(

γ + λA

λB

− 1

)

WA +

(

γ + λB

λB

− 1

)

WB

>

(

γ + λB

λB

− 1

)

(WA +WB) =
γ

λB

S > 0 (3.104)

In addition, when A’s wealth increases, in other words as (1− η)Zt
λB

λA
→ η, we have

stock price jumps be come more positive.

But when (1− η)Zt
λB

λA
< η, stock price jumps can be positive or negative in state

0. In this case

∆S =

(

γ + λA

λA

− 1

)

WA +

(

γ + λB

λA

− 1

)

WB (3.105)

In particular, when γ + λB < λA and WB ≥ WA then the stock price jump can

be negative. In other words, the dividend goes up and the stock price jumps down.
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Recalling that γ + λB − λA is the lower bound on the real interest rate, we see this

possibility corresponds to when the real interest rate can be negative. As η → 1,

however, stock prices converge to A’s private valuation so for large values of η, WB

is small and the stock price jumps will be negative.

3.1.6 Equilibrium Portfolio Choice

The next propostion gives the equilibrium portfolio choice for investor class B.

Proposition 3.8. Investor B’s equilibrium portfolio choice is given by

θB(1, N, t)∆S(1, N, t) =

(

γ + λB(N, t)

λ
Q
t

− 1

)

WB(1, N, t)− 1

λ
Q
t

1{(1−η)Zt>η}

− (1− η)Zt

λA(N, t)max(η, (1− η)Zt
λB(N,t)
λA(N,t)

)

∞
∑

j=1

PB{Nt∗(2j,Zt,t)+t = 2j +N |Nt = N}

− (1− η)Zt

λA(N, t)max(η, (1− η)Zt
λB(N,t)
λA(N,t)

)
fB(1, N, t) (3.106)

θB(0, N, t)∆S(0, N, t) =

(

γ + λB(N, t)

λ
Q
t

− 1

)

WB(0, N, t)

− (1− η)Zt

λA(N, t)max(η, (1− η)Zt
λB(N,t)
λA(N,t)

)

∞
∑

j=0

PB{Nt∗(2j,Zt,t)+t = 2j + 1 +N |Nt = N}

− (1− η)Zt

λA(N, t)max(η, (1− η)Zt
λB(N,t)
λA(N,t)

)
fB(0, N, t) (3.107)

Proposition 3.8 shows that the portfolio choice for investor class B can be thought

of three components: a component which is similar to the case where there is no trade,

a component due to the trading of consumption through time, and a component due to

learning through time. Recall, we can think of investor B’s equilibrium consumption

as a stream of option cash flows which pay $1 in state 1 whenever (1 − η)Zt > η.

In other words, this is a cash flow stream of digital options with strike price η. The

first sum in Equations (3.106) and (3.107) represent the value of a derivative security

which pays $1 whenvever (1− η)Zt = η similar to the hedge ratio for a digital option.

The baseline portfolio choice in the Harrison Kreps equilibrium is fairly static:

Investor i holds the asset whenever λi(N, t)∆St > λj(N, t)∆St. When investor B has

dogmatic beliefs Proposition 3.8 is consistent with this idea investor class B always
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Figure 23: Number of Shares of Stock for Investor Class A in State 1 as a

Function of η.
This figure shows how the number of shares Investor class A holds in State 1 as a function
of η when investors have dogmatic beliefs. Parameters: λA = 0.6, λB = 0.5, and γ = 0.1

maintains θBt ∆St < 0. If ∆S(1, N, t) < 0 this means investor class B will always be

long the share in state 1. However, investor class A does not always short stock in

state 1. When speculators have limited resources however, the wealth distribution

introduces changes in the marginal buyer. When investor class B is not very wealthy

investor class A will hold shares. Figures 23, 24, 25, and 26 show the equilibrium

portfolio choice for Investor class A at time 0 as a function of η when investors

have dogmatic beliefs. For large values of η, Investor class A dominates the wealth

distribution and in both states Investor class A is buying shares. For smaller values

of η Investor class B dominates the wealth distribution and in both states is buying

shares. As η goes to 1
2
the wealth distribution equalizes and we see Investors taking

larger speculative positions. We see that investors follow a momentum strategy in

one state and a contrarian strategy in the other state. When investors have large

disagreements, we see that positions grow unboundedly around the points where

∆S = 0 and their position has reverse sign from the Harrison Kreps strategy in

between these points.

Figures 27 and 28 show the initial portfolio choice for investor class A as a function

of η when investors learn. The pattern is again similar to the case with no learning

because we have fixed N = t = 0 so the learning effects are not present.

3.1.7 Term Structure

Recall, equilibrium interest rates are less than or equal to the rate of time preference

γ and are lowest when the stock price is just past its peak. The reason for this is that
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Figure 24: Number of Shares of Stock for Investor Class A in State 0 as a

Function of η.
This figure shows how the number of shares Investor class A holds in State 0 as a function
of η when investors have dogmatic beliefs. Parameters: λA = 0.6, λB = 0.5, and γ = 0.1
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Figure 25: Number of Shares of Stock for Investor Class A in State 1 as a

Function of η.
This figure shows how the number of shares Investor class A holds in State 1 as a function
of η when investors have dogmatic beliefs for larger disagreement. Parameters: λA = 1.0,
λB = 0.5, and γ = 0.1
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Figure 26: Number of Shares of Stock for Investor Class A in State 0 as a

Function of η.
This figure shows how the number of shares Investor class A holds in State 1 as a function
of η when investors have dogmatic beliefs for larger disagreement. Parameters: λA = 1.0,
λB = 0.5, and γ = 0.1
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Figure 27: Initial Share Holdings for Agent A in State 1.

This figure shows the number of shares of stock for agent A in state 1 for N = 0 versus η

when agents learn. Parameters: zA = zB = 1, λA(0, 0) = 0.6, λB(0, 0) = 0, 5, and γ = 0.1.
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Figure 28: Initial Share Holdings for Agent A in State 0.

This figure shows the number of shares of stock for agent A in state 0 for N = 0 versus
η when investors learn. Parameters: zA = zB = 1, λA(0, 0) = 0.6, λB(0, 0) = 0, 5, and
γ = 0.1.
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investors account for future speculative investments and anticipate that equilibrium

prices will offer even greater speculative prices in the bad states of the world.

Proposition 3.9. Assume λA(N, t) > λB(N, t). A Zero coupon bond which pays one
unit and matures at time T has price at time t given by

e−γ(T−t)





η

max[η, (1− η)Zt]

∞
∑

j=n∗

PA{NT = j|Nt}+
(1− η)Zt

max[η, (1− η)Zt]

n∗−1
∑

j=0

PB{NT = j|Nt}





(3.108)
where n∗ is given by the smallest nonnegative integer, n, for which

ηPA{NT = n|Nt} > (1− η)ZtP
B{NT = n|Nt} (3.109)

Figure 29 shows the term structure for two different values of η. These correspond

to the term structure just after peak stock price and and for the peak stock price.

What is interesting is that the term structure is not smooth and does not have to be

monotone. Figure 30 compares the term structure of interest rates when the stock

price is highest. In both cases we see a steeply upward sloping term structure. The

standard model of term structure usually associates a steeply upward sloping term

structure with economic expansion. Here we see that a steeply upward sloping term

structure can also be associated with wealthy speculators who perceive profitable

speculative profits in the future. The term structure is steeper and smootherfor the

learning case as opposed to the case where there is no learning. This is because our

speculators know that each other will weight the data heavily when revising their

estimates and future speculative trade will be less profitable. It is worth noting that

these properties will be present in any model in which agents disagree about rare

events.

4 Survival

4.1 Survival: Learning

We now examine the survival of agents when they learn from the data. In equilibrium,

A consumes when

η

(

Γ(Nt + zA)

Γ(zA)

kzA
A

(t+ kA)Nt+zA

)

> (1− η)

(

Γ(Nt + zB)

Γ(zB)

kzB
B

(t+ kB)Nt+zB

)

(4.110)
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Figure 29: Term Structure.

This figure shows the term structure for parameters λA = 0.6, λB = 0.5, γ = 0.1. From left
to right: η = 0.47 and η = 0.5.
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Figure 30: Learning Term Structure.

This figure shows the term structure for η = 0.5 and N = 0. Parameters: zA = zB = 1,
λA(0, 0) = 0.6, λB(0, 0) = 0, 5, and γ = 0.1.
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Rearranging

η

1− η

Γ(zB)

Γ(zA)

kzA
A

kzB
B

>
Γ(Nt + zB)

Γ(Nt + zA)

(t+ kA)
Nt+zA

(t+ kB)Nt+zB

= N zA−zB
t

Γ(Nt + zB)

Γ(Nt + zA)
N zB−zA

t tzA−zB

(

(1 + kA
t
)

(1 + kB
t
)

)Nt
(

(1 + kA
t
)zA

(1 + kB
t
)zB

)

= N zA−zB
t

Γ(Nt + zB)

Γ(Nt + zA)

(

Nt

t

)zB−zA

exp

(

Nt

t

(

t log

(

1 +
kA

t

)

− t log

(

1 +
kB

t

)))

(1 + kA
t
)zA

(1 + kB
t
)zB

(4.111)

Using Abramowitz and Stegun(1970) Equation 6.1.46

lim
n→∞

na−b Γ(n+ b)

Γ(n+ a)
= 1 (4.112)

and the fact

lim
t→∞

t log(1 +
ki

t
) = ki (4.113)

and Nt

t
→ λ, we see that A consumes in the limit when

η

1− η

Γ(zB)

Γ(zA)

kzA
A

kzB
B

> λzB−zA exp[λ(kA − kB)] (4.114)

and B consumes in the limit when

η

1− η

Γ(zB)

Γ(zA)

kzA
A

kzB
B

< λzB−zA exp[λ(kA − kB)] (4.115)

This can be rearranged to get

Proposition 4.1. Suppose the true intensity of the Poisson process is λ Then A

survives in the limit if

η
kzA
A

Γ(zA)
e−λkAλzA−1 > (1− η)

kzB
B

Γ(zB)
e−λkBλzB−1 (4.116)

and investor class B survives if

η
kzA
A

Γ(zA)
e−λkAλzA−1 < (1− η)

kzB
B

Γ(zB)
e−λkBλzB−1 (4.117)

In contrast to the results in Blume and Easley(2006) where agents satisfy Inada

conditions and all Bayesian learners survive if the support of their prior contains

the truth, survival of risk neutral Bayesian learners depends on the initial wealth

distribution as well as their prior density evaluated at the truth. For example if

η = 1− η so prices are maximized at time 0, then the agent whose density evaluated

at the truth is highest survives. If, additionally, zA = zB, we see the investor with

the highest ki survives. That is the investor with the lowest prior expectation and

variance of λ will survive.
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4.2 Survival: No Learning

Now suppose the true probability measure is P and under P , the intensity of the

Poisson process N is given by λ and λA > λB(the opposite case is simply a relabeling

exercise). From the strong law of large numbers we know limt→∞
Nt

t
= λ, P almost

surely. Therefore since limt→∞
n∗(t)

t
= λA−λB

log(λA)−log(λB)
, we can deduce A survives if

λA − λB

log(λA)− log(λB)
< λ (4.118)

and B surivives if
λA − λB

log(λA)− log(λB)
> λ (4.119)

For 0 < y < x we have the inequality

√
xy <

x− y

log(x)− log(y)
<

x+ y

2
(4.120)

so a sufficient condition for A to survive is

λA + λB

2
< λ (4.121)

and a sufficient condition for B to survive is

√

λAλB > λ (4.122)

which leads to

Proposition 4.2. If λA 6= λB and λA = λ then A survives and B does not. If

λA 6= λB and λB = λ then B survives and A does not. In other words the investor

class with the correct beliefs always survives and in this case the investor class with

the wrong beliefs never survives in a Pareto Optimal Allocation with strictly positive

planner weights. However, from the individual’s perspective, they always belive they

will survive and the other investor class will not, that is

lim
t→∞

PB{Nt ≤ n∗(t)} = 1 (4.123)

lim
t→∞

PA{Nt > n∗(t)} = 1 (4.124)

The last statement follows from limt→∞
Nt

t
= λA, P

A almost surely and limt→∞
Nt

t
=

λB, P
B almost surely.
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Recall in the case with learning, survival depended on the wealth distribution as

well as investors prior densities evaluated at the truth. In the case with no learning,

as long as agents have positive wealth, regardless of the wealth distribution, the agent

whose beliefs are in a sense closest to the truth survive. This is because their prior

distribution is degenerate. Asymptotically, agents concentrate their wealth into these

degenerate states.

5 Conclusion

In this paper we examined several variants of speculative models with and without

learning in the framework of a simple continuous time markov chain. Models with

unlimited capital along the lines of Harrison and Kreps(1978) do not capture the

effects of limited capital on asset prices. When we examine a version of this model

in which interest rates are endogenous, many interesting findings arise. First, asset

prices are higher than individuals private valuations when the wealth distribution

is reasonably similar across individuals. The speculative premium is driven by a

disagreement effect and also an interest rate effect. The interest rate effect is due to

precautionary speculation – the idea that adverse shifts in states will produce even

better speculative prices. Many of our results can be generalized to more complex

settings. The basic findings would be robust to many of these generalizations however.
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Appendix

Proof of Proposition 2.1. The bounds follow from the inequality

x

x+ 1− a
< exx1−aΓ(a, x) <

x+ 1

x+ 2− a
(5.125)

which is valid for a < 1 and x > 0. See the NIST Digital Library of Mathematical

Functions.

Proof of Proposition 2.2. Supppose there exist bounded stopping times σ and τ

with σ < τ and

Ei

[

e−γτSτ +

∫ τ

0

e−γsδsds|Fσ

]

> e−γσSσ +

∫ σ

0

e−γsδsds (5.126)

or equivalently

Ei

[

e−γ(τ−σ)Sτ +

∫ τ

σ

e−γ(s−σ)δsds|Fσ

]

> Sσ (5.127)

which implies

Ei

[

e−γ(τ−σ)(Sτ − eγ(τ−σ)Sσ) +

∫ τ

σ

e−γ(s−σ)δsds|Fσ

]

> 0 (5.128)

The trade borrow Sσ and buy one share of stock at time σ; liquidate the position at

time τ , deposit the proceeds in the riskless asset and consume γ(Sτ−eγ(τ−σ)Sσ) forever

is feasible as an incremental trade from any candidate optimum. Notice from time τ

on wealth is constant and equal to Sτ − eγ(τ−σ)Sσ which satisfies the transversality

constraint. Since this trade can be undertaken at any fixed scale there cannot be an

optimal solution. Therefore we must have for all bounded stopping times σ and τ

with σ < τ

Ei

[

e−γτSτ +

∫ τ

0

e−γsδsds|Fσ

]

≤ e−γσSσ +

∫ σ

0

e−γsδsds (5.129)

so e−γtSt +
∫ t

0
e−γsδsds is a P i supermartingale. Therefore

S(ι, 0, 0) ≥ Ei

[∫ s

0

e−γtδtdt

]

+ Ei
[

e−γsSs

]

(5.130)

Taking limits, we have

S(ι, 0, 0) ≥ Ei

[∫ ∞

0

e−γtδtdt

]

= Si(ι, 0, 0) (5.131)
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Proof of Proposition 2.3. Obviously the stock market clears given the trading

strategies above so the only thing to show is that this is optimal for each investor.

For an arbitrary feasible choice of c, θ, α we have

e−γtWt +

∫ t

0

e−γscsds

= W i
0 +

∫ t

0

e−γs(λi(Ns, s)− λQ(Ns, s))θs∆Ssds+

∫ t

0

e−γsθs∆Ss(dNs − λi(Ns, s)ds)

(5.132)

Taking expectations, then limits as t → ∞, an application of the monotone conver-

gence theorem, using the transversality constraint, and using the fact that

Ei

[∫ t

0

e−γs(λi(Ns, s)− λQ(Ns, s))θs∆Ssds

]

≤ 0 (5.133)

with equality for the strategy given in the proposition, we obtain

W i
0 ≥ sup

{c,θ,α}

Ei

[∫ ∞

0

e−γscsds

]

(5.134)

with equality for the policy described in the Proposition. The transversality constraint

holds for the consumption plan in Equation (2.34) because

Ei
[

e−γtW i
t

]

+ Ei

[∫ t

0

e−γscisds

]

= W i
0 (5.135)

Taking limits and applying the monotone convergence theorem and using Equa-

tion (2.34) then gives limt→∞Ei [e−γtW i
t ] = 0. Therefore, the claimed strategy is

indeed optimal.

Moreover, the value function at the optimum is strictly higher than that corre-

sponding to never trading and simply consuming the dividends, that is

θiS(ι, 0, 0) > θiSi(ι, 0, 0) (5.136)

which implies the speculative premium is strictly positive for each i.

Proof of Proposition 2.4. Let θt =
∆S

Q
t

∆St
, ct = δt, and W0 = SQ(ι, 0, 0). Then the

wealth process from these choices satisfies

dWt = (γWt − θtλ
Q
t ∆St − ct)dt+ θt∆StdNt

= (γWt − λ
Q
t ∆S

Q
t − δt)dt+∆S

Q
t dNt (5.137)
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Given W0 = SQ(ι, 0, 0) we then conclude Wt = SQ(ι, Nt, t) almost surely. Therefore

this process provides the same dividends for a lower initial investment.

Proof of Proposition 2.5. One can easily verify these are solutions to Equa-

tions (2.32) and (2.33). Since they are bounded, they must be the minimal consistent

prices.

Proof of Propostion 2.6. Let λ̃Q(N, t) be the intensity of the counting process in

the measure which prices S̃. We know that

e−γuS̃Q(ιu, Nu, u) +

∫ u

t

e−γsδsds

= e−γtS̃Q(ιt, Nt, t) +

∫ u

t

e−γs∆S̃Q(ιs, Ns, s)(dNs − λ̃Q(Ns, s)ds)

= e−γtS̃Q(ιt, Nt, t) +

∫ u

t

e−γs(λQ(Ns, s)− λ̃Q(Ns, s))∆S̃Q(ιs, Ns, s)ds

+

∫ u

t

e−γs∆S̃Q(ιs, Ns, s)(dNs − λQ(Ns, s)ds) (5.138)

Our assumptions imply λQ(N, s) ≤ λ̃Q(N, s) when ∆S̃Q > 0 and λQ(N, s) ≥ λ̃Q(N, s)

when ∆S̃Q < 0 when s ≥ t∗ and N ≥ N∗. Therefore the process

e−γuS̃Q(ιu, Nu, u) +

∫ u

t

e−γsδsds (5.139)

is a supermartingale in the measure which prices SQ for t ≥ t∗ and Nt ≥ N∗. This,

and the boundedness of the minimal consistent prices then imply

S̃Q(ιt, Nt, t) ≥ EQ

[∫ ∞

t

e−γ(s−t)δsds|Ft

]

= SQ(ιt, Nt, t) (5.140)

Proof of Proposition 2.7. We first show the prices

S̃Q(1, N +M, s+ t) =

1

γ(B(t) + 1)
eX(t,s,N) (X(t, s,N))

zB+N+M
Γ (1− zB −N −M,X(t, s,N)) +

B(t)

γ(B(t) + 1)
(5.141)

and

S̃Q(0, N +M, s+ t) =

1

γ(B(t) + 1)
eX(t,s,N) (X(t, s,N))

zB+N+M

(

A(t,N)− γB(t)

A(t,N) + γ

)

Γ (1− zB −N −M,X(t, s,N))+
B(t)

γ(B(t) + 1)
(5.142)

and

X(t, s, N) =
(A(t, N) + γ)(kB + t+ s)

B(t) + 1
(5.143)
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are the minimal consistent prices for a Harrison Kreps equilibrium which starts at time

t when Nt = N and investor class A estimates the intensity to be λ̃A(N +M, s+ t) =

A(t, N) +B(t)λB(N +M, s+ t). Then the bounds follow from Proposition 2.6 since

λ̃A(N +M, s+ t) ≥ λA(N +M, s+ t) for s ≥ 0 and M ≥ 0.

To do this, first observe that under the assumption zA ≤ zB + γ(kB + t) then

A(t, N) ≤ γB(t) and

S̃Q(0, N + 1, t+ s) <
B(t)

γ(1 + B(t))
< S̃Q(1, N, t+ s) (5.144)

and

S̃Q(0, N, t+ s) <
B(t)

γ(1 + B(t))
< S̃Q(1, N + 1, t+ s) (5.145)

so ∆S̃(0, N, t + s) > 0 and ∆S̃(1, N, t + s) < 0. We next take the derivative of

these prices with respect to s. After using the recursion Γ(−zB − N − M,x) =

− 1
zB+N+M

Γ(1− zB −N −M,x) + 1
zB+N+M

e−xx−zB−N−M and tedious algebra we find

∂S̃Q(1, N +M, t+ s)

∂s
= γS̃Q(1, N+M, t+s)−λB(N, t+s)(S̃Q(0, N+M+1, t+s)−S̃Q(1, N+M, t+s))−

(5.146)
∂S̃Q(0, N +M, t+ s)

∂s
= γS̃Q(0, N+M, t+s)−λ̃A(N, t+s)(S̃Q(1, N+M+1, t+s)−S̃Q(0, N+M, t+s))

(5.147)

so these satisfy Equations (2.32) and (2.33) and the fact these prices are bounded

implies the prices are the Harrison Kreps minimal consistent prices from Proposti-

tion 2.3.

The remaining bounds follow as in Proposition 2.1.

Proof of Proposition 2.8. Follows from Equation (2.56), the fact S̃Q(ι, N, t) ≥
SB(ι, N, t) and Nt

t
→ λ PA or PB almost surely.

Proof of Proposition 2.9. We have
∫∞

0
e−γt(cAt +cBt )dt = S(ι, 0, 0) and by definition,

Si(ι, 0, 0) = Ei
[∫∞

0
e−γtδtdt

]

which gives the first equality in Equation (2.66). Taking

the expectation under P i and the limit as t → ∞ in Equation (2.64) gives the second

equality in Equation (2.66). The third equality in Equation (2.66) follows from

e−γtSt +

∫ t

0

e−γsδsds

= S0 +

∫ t

0

e−γs(λi(Ns, s)− λQ(Ns, s))∆Ssds+

∫ t

0

e−γs∆Ss (dNs − λi(Ns, s)ds)

(5.148)
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and the fact that
∫ t

0

e−γs(λi(Ns, s)− λQ(Ns, s))∆Ssds =

∫ t

0

e−γs(λi(Ns, s)− λj(Ns, s))θ
j
s∆Ss (5.149)

Taking expectations under P i in Equation (5.148), the limit as t → ∞ and using

Equation (5.149) then gives the third equality.

Proof of Proposition 2.10. We have
∫∞

0
e−γt(cAt + cBt )dt = S(ι, 0, 0) and by defini-

tion, SQ(ι, 0, 0) = EQ
[∫∞

0
e−γtδtdt

]

which gives the first equality in Equation (2.70).

Taking the expectation under Q and the limit as t → ∞ in Equation (2.64) gives the

second equality in Equation (2.70).
Proof of Proposition 3.1. The form of the value function given in Equation (3.72)

follows from standard arguments. Given this form, assume there exists an optimal
solution. Then e−γtWth

i(Nt, t) +
∫ t

0
e−γscsds is a martingale for the optimal policy

and a supermartingale for any other policy. Applying integration by parts to this
gives

de−γtWth
i(Nt, t) + e−γtctdt

= e−γthi(Nt, t)dWt+e−γtWtdh
i(Nt, t)+e−γt∆Wt∆hi(Nt, t)dNt−γe−γtWth

i(Nt, t)+e−γtctdt

= e−γt

(

∂h

∂t
Wt + hi(N, t)

{

(rt − γ)Wt +
(

λi(N, t)− λQ(N, t)
)

θt∆St

}

+ (1− hi(N, t))ct

)

dt

+ e−γt
(

λi(N, t)hi(N + 1, t)Wt + λi(N, t)
(

hi(N + 1, t)− hi(N, t)
)

θt∆St

)

dt

+ e−γt
(

hi(N, t)θt∆St +Wt∆hit +∆hit∆Wt

)

(dNt − λi(N, t)dt) (5.150)

which implies

Wt

(

∂h

∂t
+ hi(N, t)(rt − γ − λi(N, t)) + λi(N, t)hi(N + 1, t)

)

+
{

λi(N, t)hi(N + 1, t)− λQ(N, t)hi(N, t)
}

θt∆St + (1− hi(N, t))ct ≤ 0 (5.151)

Wt

(

∂h

∂t
+ hi(N, t)(rt − γ − λi(N, t) + λQ(N, t))

)

+
{

λi(N, t)hi(N + 1, t)− λQ(N, t)hi(N, t)
}

(θt∆St +Wt) + (1− hi(N, t))ct ≤ 0
(5.152)

with equality when θt and ct are optimal. The proposition then follows from the fact

that ct ≥ 0 and Wt + θt∆St ≥ 0.

Proof of Corollary 3.1. If there is an optimal solution where the wealth constraint

does not bind, then

λi(N, t)hi(N + 1, t) = λQ(N, t)hi(N, t) (5.153)
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The corollary then follows by integration by parts.

Proof of Proposition 3.2. We have W
j
t ≤ S

j
t and thus W j

t− + θ
j
t∆St ≤ S

j
t− +∆S

j
t .

From market clearing, W j
t− = St− −W i

t− so St− −W i
t− + θ

j
t∆St ≤ S

j
t− +∆S

j
t . Again

from market clearing, θit = 1 − θ
j
t , so St− − S

j
t− +∆St −∆SA

t ≤ W i
t− + θit∆St. This

gives Equation (3.79).

If W j
t− > S

j
t then this and Equation (3.79) give W i

t−+θit∆St ≥ St−S
j
t > St−W

j
t−

and hence St− + θit∆St > St. Therefore if ∆St < 0, θit < 1 so θ
j
t > 0.

Proof of Proposition 3.3. We will prove this for the case where investors learn from

the data. The case where investors have dogmatic beliefs is identical and simpler.

Suppose, to the contrary, that the wealth constraint binds for investor i, that is

there exists an N and an open interval U such that in equilibrium, Wu = 0 for all

u ∈ U . In this case, for any u ∈ U , investor j will set future prices so rt ≡ γ and

λQ(N, t) = λj(N, t) for all t ≥ u. To alleviate notation, define λi
u(N, t) ≡ λi(N, t+u).

Consider the feasible trading strategy which starts with Wu > 0, with no con-

sumption withdrawals ct = 0 and fixes a πt =
θtSt−

Wt−
, with 1 + πt

∆Sj(ι,N,t)
Sj(ι,N,t))

> 0 and let

θt =
πtWt

Sj(ι,N,t)
. Define τ as the time the state shifts from ι to 1− ι. Then at time τ we

have

e−γτWτ = Wu exp

[

−
∫ τ

0

λj
u(N, s)

πs∆Sj(ι, N, s+ u)

Sj(ι, N, s+ u)
ds

](

1 + πτ

∆Sj(ι, N, τ + u)

Sj(ι, N, τ + u)

)

(5.154)
Therefore

Ei
[

e−γτWτ |Nu = N
]

= Wu

∫ ∞

0
λi
u(N, t)

(

1 + πt
∆Sj(ι,N, t+ u)

Sj(ι,N, t+ u)

)

exp

[∫ t

0

(

−λj
u(ι,N, s)πs

∆Sj(ι,N, s+ u)

Sj(ι,N, s+ u)
− λi

u(N, s)

)

ds

]

dt

= Wu

∫ ∞

0
λi
u(N, t)

(

1 + πt
∆Sj(ι,N, t+ u)

Sj(ι,N, t+ u)

)

×exp

[∫ t

0

(

(

λi
u(N, s)− λj

u(N, s)
)

πs
∆Sj(ι,N, s+ u)

Sj(ι,N, s+ u)
− λi

u(N, s)

(

1 + πs
∆Sj(ι,N, s+ u)

Sj(ι,N, s+ u)

))

ds

]

dt

(5.155)

In particular, for i = A set πt =
ln(K)

λA
u (N,t)−λB

u (N,t)
SB(ι,N,t+u)
∆SB(ι,N,t+u)

. Then 1+πt
∆SB(ι,N,t+u)
SB(ι,N,t+u)

> 0

for any K > 1 and

exp

[∫ t

0

(

(

λA
u (N, s)− λB

u (N, s)
)

πs

∆Sj(ι, N, s+ u)

Sj(ι, N, s+ u)

)

ds

]

= et ln(K) = Kt (5.156)
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so

EA
[

e−γτWτ |Nu = N
]

= Wu

∫ ∞

0
KtλA

u (N, t)

(

1 + πt
∆Sj(ι,N, t+ u)

Sj(ι,N, t+ u)

)

exp

[

−
∫ t

0
λA
u (ι,N, s)

(

1 + πs
∆Sj(ι,N, s+ u)

Sj(ι,N, s+ u)

)

ds

]

dt

(5.157)

Since anyK > 1 is possible, this implies the value function for investor A is infinite

whenever prices are set by investor B. This is inconsistent with equilibrium; investor

A can improve on any candidate optimum by avoiding default, setting consumption

equal to 0 until time τ , consume Wτ

γ
and enjoy arbitrarlity high expected utility. We

conclude investor class A will never default in equilibrium.

When i = B, set πt = −λB
u (N,t)

λA
u (N,t)

SA(ι,N,s+u)
∆SA(ι,N,s+u)

. Then 1 + πt
∆SA(ι,N,t+u)
SA(ι,N,t+u)

> 0 and

EB
[

e−γτWτ |Nu = N
]

= Wu

∫ ∞

0

λB
u (N, t)

(

1− λB
u (N, t)

λA
u (N, t)

)

dt

= Wu

∫ ∞

0

zB +N

t+ u+ kB

(

(t+ u+ kB)(zA +N)− (t+ u+ kA)(zB +N)

(t+ u+ kB)(zA +N)

)

dt

≥ Wu

∫ ∞

0

zB +N

t+ u+ kB

(

(t+ u+ kB)(zA +N)− (t+ u+ kB)(zB +N)

(t+ u+ kB)(zA +N)

)

dt

= Wu

zB +N

zA +N
(zA − zB)

∫ ∞

0

1

t+ u+ kB
dt = ∞ (5.158)

Since kB ≥ kA and zB < zA. For a similar reason as before, this is inconsistent with

equilibrium.

Proof of Proposition 3.4. From Proposition 3.1 we know market clearing in the

consumption market requires hi(N, t) = 1 for some i. Since hi(N, t) = 1 implies

rt + λQ(N, t) = γ + λi(N, t) and λA(N, t) > λB(N, t) for all N and t we know that

(except possibly for a measure 0 set of points), if rt + λQ(N, t) = γ + λi(N, t), then

hj(N, t) > 1 for j 6= i. Therefore an equilibrium is characterized by only one investor

consumes the entire dividend in each time and state while the other investor saves.

Therefore

J i(W i
t , Nt, t) = W i

th
i(Nt, t) = Ei

[∫ ∞

t

e−γ(s−t)δs1{hi(Ns,s)=1}ds|Ft

]

(5.159)

which gives

J i(W i
t , Nt, t) ≡ W i(ι, Nt, t) = W i

t =
1

hi(Nt, t)
Ei

[∫ ∞

t

e−γ(s−t)δs1{hi(Ns,s)=1}ds|Ft

]

(5.160)
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and the equilibrium stock price is given by market clearing.

S(ι, Nt, t) = WA
t +WB

t (5.161)

So determining equilibrium boils down to determining the functions hA(N, t) and

hB(N, t).

For some arbitrary η ∈ (0, 1), let hA(Nt, t) = max(η,(1−η)Zt)
η

and let hB(Nt, t) =
max(η,(1−η)Zt)

(1−η)Zt
. For each fixed N we have hA(N, t) > 1 implies hB(N, t) = 1 and

hB(N, t) > 1 implies hA(N, t) = 1 except for points where η = (1 − η)Zt. When

λA(N, t) > λB(N, t), hA(N, t) is strictly increasing in t when η < (1 − η)Zt while

hB(N, t) is strictly decreasing in t when η > (1 − η)Zt so these points are lesbesgue

measure 0. Given these choices, define θ(η) by

θ(η) =
WA(ι, 0, 0)

S(ι, 0, 0)
(5.162)

and ρAt = e−γt h
A(Nt,t)
hA(0,0)

. Equate ρAt = e−
∫ t
0 rsdsMt for a processMt which satisfies dMt =

∆Mt(dNt − λi(Nt, t)dt), M0 = 1. Integration by parts and matching coefficients then

identifies the interest rate rt. The relation hi(N, t) = 1 ⇒ rt+λQ(N, t) = γ+λi(N, t)

identifies λQ. This then defines an equilibrium for the initial endowments θ(η) = θA

and 1−θ(η) = θB. By varying η we can find an equilibrium for any initial endowments.

To see this observe that limη→0 θ(η) = 0, limη→1 θ(η) = 1, and θ(η) is continuous in

η.

Proof of Proposition 3.5. The stock price is given by

St =
1

ρAt
EA

[∫ ∞

t

ρAs δsds|Ft

]

(5.163)

The expressions in the proposition come from interchanging the expectation and the

integral, and then interchanging the integral and the resulting sum.

Proof of Proposition 3.6. Investor B’s wealth is given by

WB
t =

1

ρBt
EB

[∫ ∞

t

ρBs δs1{hB(Ns,s)=1}ds|Ft

]

(5.164)

where ρBt = e−γt h
B(Nt,t)
hB(0,0)

. The expressions in the proposition follow by interchanging

the expectation and the integral, and then interchanging the integral and the resulting

sum.
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Proof of Corollary 3.2. The expressions follow from taking the appropriate deriva-

tives in Equations (3.87) and (3.88).

Proof of Proposition 3.7. We have

∂S(ι, N, t)

∂t
= rtSt − δt − λ

Q
t ∆St (5.165)

or
∆St

St

=
rtSt − δt − ∂S(ι,N,t)

∂t

λ
Q
t St

(5.166)

The result now follows from Corollary 3.2 and tedious algebra.

Proof of Proposition 3.8. The result follows from differentiating Equations (3.90)

and (3.91) with respect to t,

∂WB

∂t
= rtW

B
t − cBt − λ

Q
t θ

B
t ∆St (5.167)

and tedious algebra.

Proof of Proposition 3.9. The time t price of a zero coupon bond maturing at

time T is given by

Pt =
1

ρAt
EA
[

ρAt |Ft

]

(5.168)

The expression in the proposition comes from evaluating this expression.
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