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Abstract

In this paper we study the relation between returns on the aggregate stock market and

aggregate real investment. While it is well known that the aggregate investment rate

is negatively correlated with subsequent excess stock market returns, we find that it is

positively correlated with future stock market volatility. Thus, conditionally on past

aggregate investment, the mean-variance tradeoff in aggregate stock returns is negative.

We interpret these patterns within a general equilibrium production economy. In our

model, investment is determined endogenously in response to two types of shocks:

shocks to productivity and preference shocks affecting discount rates. Preference shocks

affect expected stock returns, aggregate investment rate, and stock return volatility in

equilibrium, helping model reproduce the empirical relations between these variables.

Thus, our results emphasize that the time-varying price of aggregate risk plays and

important role in shaping the aggregate investment dynamics.
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1 Introduction

In this paper we explore the relation between aggregate real investment and stock market

volatility, an important aspect of the broader relation between financial markets and the

real economy. In a recent influential paper, Bloom (2009) analyzes the impact of large

transient volatility shocks on aggregate investment. We focus on a different aspect of the joint

dynamics of volatility and investment, relating aggregate investment to persistent changes

in return volatility. We document a new empirical pattern: high aggregate investment

rate forecasts persistently high subsequent market volatility. It is well known (e.g., Abel

(1983), Caballero (1991)) that the sign of the investment-volatility relation depends on the

structure of the economic environment. To help narrow down the range of possible structural

explanations for the observed positive correlation between aggregate real investment and

expected future stock market volatility, we rely on the additional empirical patterns in the

joint dynamics of stock returns, investment, and output.

An important feature of the stock return-investment dynamics is negative correlation

between aggregate investment rate and subsequent excess stock market returns, studied in

Cochrane (1991).1

In our model, time-varying discount rates generate both the negative relation between

investment and future excess returns and the positive relation between aggregate investment

and future stock market volatility. The first relation is well understood. It is consistent with

the basic partial-equilibrium intuition that, ceteris paribus, an exogenous decline in discount

rates should increase the net present value of potential investment projects, and thus should

raise the aggregate investment rate.

1The relation between investment and subsequent excess stock market returns has also been studied in
the cross-section of firms, e.g., Titman, Wei, and Xie (2004), Chen, Novy-Marx, and Zhang (2010), Kogan
and Papanikolaou (2010).
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To see the intuition behind the second relation, consider the classic Gordon model for

stock valuation. The price of the stock is proportional to the expected future dividend, and

inversely proportional to the difference between the expected growth rate of dividends, and

the discount rate, both assumed constant:

P0 =
E0[D1]

r − g
, (1)

where time is discrete, P0 is the stock price at time 0, E0[D1] is the expected time-1 dividend,

r denotes the cost of capital, and g denotes the expected dividend growth rate. Assume,

furthermore, that dividend growth is homoscedastic, so heteroscedastic stock return volatility

is not generated mechanically by a similar pattern in cash flows. Consider a comparative-

statics experiment: holding the expected future dividends fixed, reduce the discount rate

by a small amount. This has an effect of increasing the stock price at time 0, which is a

well-known effect of time-varying discount rates on the volatility in stock returns. Note that

the magnitude of the impact of a discount rate change on the stock price depends on the

initial difference between the discount rate and the expected growth rate: if r−g is relatively

low, the same change in the discount rate has larger impact on the stock price than it would

at higher levels of r − g. This simple observation prompts a conjecture: if discount rates

experience homoscedastic shocks, an exogenous decline in discount rates should give rise

to higher future return volatility. Since a decline in discount rates also naturally leads to

an increase in the aggregate investment rate, we thus conclude that time-varying discount

rates may give rise to a positive correlation between real investment and future stock market

volatility.

The above conjecture is based on ad hoc arguments ignoring the general equilibrium

considerations and liberally using comparative statics in lieu of rigorous dynamic analysis.
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We formalize these arguments using a general-equilibrium production economy model. The

economy in our model is affected by two types of shocks: productivity shocks and preference

shocks. Our framework is very similar to canonical real business cycle models in its treatment

of production. The only deviation from the standard setting is in our assumption that

the representative household is subject to preference shocks. Effectively, preference shocks

generate exogenous variation in risk aversion of the representative household, and with it

variation in the market prices of risk. We calibrate our model to match the key unconditional

moments of consumption growth and financial asset returns. We then verify that our model

generates the same qualitative predictive relations as we document empirically and comes

close in replicating the magnitude of the observed effects.

Our analysis further supports the idea that accounting for the time-varying price of risk

in financial markets is important for understanding the dynamics of real economic activity.

Modern asset pricing literature has emphasized the significance of time-varying price of risk,

or return predictability, for understanding the key properties of asset return behavior, such

as excess volatility of asset returns and high equity premium (e.g., Campbell and Cochrane

(1999), Cochrane (1999)). Our paper adds to this body of work by arguing that time-varying

price of risk may also be the cause of persistent changes in return volatility that we document.

Thus, we tie together the core asset pricing results on return predictability and the growing

literature on the connections between real economic activity and time-varying uncertainty

(e.g., Bernanke (1983), Leahy and Whited (1996), Bloom, Bond, and Reenen (2007), Bloom

(2009)). As shown in Bloom (2009), stock market volatility is a key indicator of economic

uncertainty. Our analysis in this paper offers an economic interpretation of the empirical

relations between market volatility and real investment.

The rest of the paper is organized as follows. Section 2 describes the data and empirical
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results. Section 3 presents the theoretical model. Section 4 presents calibration results and

robustness checks. Section 5 concludes.

2 Empirical Results

2.1 Data and procedures

Our sample starts 1947Q1 and ends 2009Q3 for a total of 251 quarters.2 We use lowercase

letters for logs of all variables throughout this section and the rest of the paper.

As a measure of aggregate stock returns, we use returns on the CRSP value weighted

portfolio, available from Kenneth French’s website. We construct quarterly returns, rt,
3 from

the daily returns. To construct excess returns, we subtract the three-month T-bill rate, rft ,

available from the Federal Reserve Bank of St. Louis.

We also use quarterly data on realized volatility. Specifically, we construct a quarterly

series volt, defined as the log of the standard deviation of daily returns within quarter t.4

We find that our results are robust to Winsorizing the volatility series or using alternative

measures of realized volatility, such as absolute values of quarterly returns.

Quarterly data for the macroeconomic variables is from U.S. National Income and Prod-

uct Accounts (NIPA) available directly from the Bureau of Economic Analysis (BEA).5 These

include real6 Gross Domestic Product, Yt, or GDP (Table 1.1.6, item 1) and Gross Private

2We find that excluding the 2008-2009 period from our sample has no effect on the qualitative results,
and has only minor effect on the point estimates. Thus, our conclusions are robust to excluding the financial
crises period. We also find that our conclusions are unchanged if we exclude the immediate post-war period
of 1947-1952.

3rt is log cumulative return on the value-weighted portfolio of NYSE, NASDAQ, and AMEX stocks.

4For example, in order to obtain the standard deviation of the market return for 1952Q1, we use time
series of daily market returns from January 1, 1952 to March 31, 1952, calculate its standard deviation and
re-scale its value by the square root of the number of sample data points for this time period.

5In 2003, the BEA undertook comprehensive revisions of all NIPA data series. Our data incorporates
these revisions.

6These are given in billions of chained (2005) dollars.
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Domestic Investment, It, or GPDI (Table 1.1.6, item 7). Quarterly capital stock values, Kt,

are interpolated from annual values using the quarterly GPDI data for investment flows and

Private Fixed Assets (PFA) as the annual capital stock measure, with year-end 1946 as the

starting point. The annual time series for nominal PFA are taken from the Fixed Asset Ta-

bles (Table 1.1, item 3). For each quarter a fraction of the annual capital increment is added

to the current end-of-year stock, with the fraction given as the year’s investment to date, di-

vided by total investment. For investment we use nominal quarterly GPDI (Table 1.1.5, item

7). Quarterly nominal capital is deflated by the price index for gross domestic investment to

generate real quarterly capital at replacement value. Unlike the standard inventory-based

method of constructing capital stock (e.g., Cochrane (1991)), the above method does not

rely on any particular model of capital accumulation.

2.2 Empirical findings

Summary statistics

We use two variables in predictive regressions. The first is the natural log of the investment

rate, it − kt = ln(It/Kt), where investment rate is measured as the ratio of the quarterly

GPDI to the end-of-quarter capital stock (our timing convention is analogous to the one

used in defining trailing dividend yield). The second variable, yt − kt = ln(Yt/Kt), is the log

of the ratio of quarterly output to the end-of-quarter capital stock. We view this variable as

a proxy for average profitability in the economy.7

We start by summarizing the key moments of investment, profitability, and financial asset

returns in our sample.

[Table 1 ]

7Our interpretation is justified as long as the output share of capital is approximately constant. Alterna-
tively, one may simply view the two variables as jointly approximating the state vector in the economy.
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In addition to the first two moments of the key variables, we estimate their auto-

correlation. We find that profitability is highly persistent in our sample, with an eight-quarter

autocorrelation coefficient of 0.86. Aggregate investment rate shows much less persistence,

with autocorrelations declining to 0.24 and below beyond the four-quarter horizon. Con-

sistent with commonly reported results, consumption and output growth rates exhibit very

little autocorrelation. Investment growth is also close to being uncorrelated over time. Stock

returns are virtually uncorrelated over time, but stock return volatility is persistent. Auto-

correlations of volatility decline at a relatively slow rate, starting at 0.66 at a one-quarter

horizon and declining to 0.44 and 0.21 at four and eight-quarter horizons respectively. This

pattern of decline suggests that market volatility possesses more persistence than what could

be generated by a simple first-order autoregressive specification. Our results in Table 4 re-

inforce this observation.

Predictability of excess stock returns and return volatility

We first analyze predictability of stock returns. Tables 2 and 3 report predictive regressions

of single-quarter and multi-quarter excess stock returns on lagged values of investment rate

and profitability. Our regressions extend the results in Cochrane (1999) to our longer sample

and to a more general specification. We run two predictive regressions:

rt+h − rf,t+h = a0 + a1(it − kt) + εt,t+h (2)

and

rt+h − rf,t+h = a0 + a1(it − kt) + a2(yt − kt) + εt,t+h (3)

Before running these regressions, we de-trend all right-hand-side variables. We do this so that

low-frequency movements in the variables under consideration do not drive our results, since
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we cannot evaluate statistical significance of such effects in our sample. De-trending has little

effect on the predictive regressions for returns, but is potentially important for predictive

regressions of return volatility below, since return volatility exhibits some low-frequency

persistence. As a robustness check, we perform the same regression on the original series,

and find qualitatively similar results.

In the second specification, we include profitability as a second predictive variable in

addition to the investment rate. The predictive relation between the investment rate and

future excess stock returns indicates time-variation in expected stock returns. According to

conventional intuition, the aggregate investment rate is negatively affected by the discount

rates on future projects because higher discount rates imply lower net present value of cash

flows produced by new investments. Therefore, as long as discount rates on cash flows from

new investments and on those produced by existing assets are not too different, it is natural

that the investment rate is negatively correlated with future excess stock returns. This ar-

gument can be refined by observing that investment decisions are affected by profitability of

new investment projects in addition to their discount rates. Persistence of aggregate prof-

itability (see Table 1) suggests that lagged aggregate profitability may be a useful predictor

of future profitability of new investments, as long as profitability of new projects is not too

different from profitability of existing physical assets. Therefore, aggregate profitability is

a potentially useful control in predictive regression of excess stock returns on the lagged

aggregate investment rate.

It is worth noting at this point that, while our regressions are inspired by the common

intuition, our interpretation of the empirical results relies on a fully specified general equi-

librium model that we develop in the following sections. In the model, some of the vague

statements used in the previous intuitive argument are not necessary. All of the relevant
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variables are derived endogenously in equilibrium, and relations between them can be quan-

tified. For instance, discount rates on cash flows from new investments are equal to those on

cash flows from existing assets, and thus the aggregate investment rate is a useful predictor

of future excess stock returns. In anticipation of the formal equilibrium analysis below, we

note that in our model economy there are two structural shocks: shocks to productivity and

preference shocks. Discount rates, as well as profitability, are affected by both shocks in equi-

librium. Without arguing further that investment rate and profitability are each primarily

affected by a single structural shock, the two-shock structure of the model implies that the

two-variable predictive regression emerges as a natural agnostic linear approximation to the

model’s equilibrium relation between the conditional moments of financial asset returns and

equilibrium state variables.

[Table 2]

As in Cochrane (1999), we find that the investment rate predicts future excess stock

returns negatively. Adding lagged profitability as a control does not seem to affect the

results substantially, and coefficients on lagged profitability are not statistically significant.

In Table 5, we report analogous predictive regressions for a cumulative sum of excess

stock returns over multiple quarters. These regressions highlight the joint significance of

predictability in excess returns at multiple horizons. The explanatory power of these regres-

sions is quite low, but there is evidence of predictability in returns at horizons up to 16

quarters.

[Table 3]

We next summarize the results on predictability of stock return volatility in Tables 4

and 5. In Table 4, we report the results of a univariate predictive regression of volatility on
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lagged investment rate,

volt+h = a0 + a1(it − kt) + εt,t+h (4)

and of multivariate regressions, adding lagged profitability and lagged realized volatility to

the forecasting equation:

volt+h = a0 + a1(it − kt) + a2(yt − kt) + εt,t+h+1 (5)

and

volt+h = a0 + a1(it − kt) + a2(yt − kt) + a3volt−1 + εt,t+h+1 (6)

As in Tables 3, we use both the investment rate and profitability in predictive regressions.

[Table 4]

The investment rate predicts future return volatility with a positive sign at all horizons

up to 16 quarters. This pattern is stronger and has higher statistical significance in a two-

variable regression, which also includes aggregate profitability.

In the third panel of Table 4, we add lagged realized volatility to the regression. We do this

for two reasons. First, as shown in Bloom (2009), market volatility has a negative impact on

future investment at short horizons. Our model is not flexible enough to capture this pattern,

but such a relation may affect our empirical findings. In particular, at relatively short

horizons, it may weaken the positive relation between investment rate and future market

volatility produced by our current specification. We find that adding lagged volatility leaves

the results qualitatively unchanged, while significance and point estimates of coefficients on

investment rate increase at short horizons.

Second, realized volatility is a noisy proxy for the true conditional volatility, and it is

useful to see how well realized volatility can predict its own future values compared to the two
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macro-economic state variables we use in our regressions. Comparing the first panel of Table

4 with the results in Table 1, we find that investment rate and profitability jointly explain

16 percent of variation in realized return volatility at an eight-quarter horizon, while lagged

realized volatility explains only four percent of its own future variation. The pattern of R2’s

is consistent with this observation. Adding lagged volatility to the forecasting regression

significantly boosts its explanatory power at short horizons, for instance, raising the R2

from 0.03 to 0.20 at a one-quarter horizon, but has negligible effect at horizons longer that

six quarters. This indicates that there are sources of short-horizon predictability in return

volatility not captured by our predictive variables.

[Table 5]

In Table 5, we report analogous predictive regressions for a cumulative sum of realized

intra-quarter volatility over multiple quarters. These regressions highlight the joint signifi-

cance of predictability in volatility at multiple horizons. We find that the investment rate is

a highly statistically significant predictor of future stock return volatility at horizons up to

16 quarters. Profitability enters negatively in a multi-variate forecasting regression, and is

marginally statistically significant. Lagged realized volatility enters positively, and is highly

statistically significant. The pattern of coefficients and t-statistics on lagged volatility is

consistent with its predictive ability being relatively short-lived.

3 The Model

3.1 Formulation

Technology

We assume that there exists a competitive representative firm. This firm uses capital and

labor to produce a single consumption good. We denote the capital stock by Kt, the input of
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labor by Lt, and the flow of output by Yt. We assume the standard Cobb-Douglas production

function

Yt = extKα
t L

1−α
t , (7)

where the productivity shock xt follows

dxt =

(
µ− σ2

X

2

)
dt+ σX dWt.

We assume that capital depreciates at the constant rate δ and can be replenished through

investment. Denoting the investment rate by it,

dKt = (it − δ)Kt dt. (8)

We assume that new capital can be created from the consumption good subject to convex

adjustment costs, so that the flow cost of creating new capital at the investment rate it is

given by

It =
a

λ
iλtKt, (9)

where λ > 1. Thus, the marginal cost of capital creation, measured in units of the consump-

tion good, is positively related to the investment rate.

Households

We model households as a representative consumer. The representative agent owns the

representative firm and supplies labor competitively in the labor market. We assume that

the representative household is endowed with a constant flow of labor, normalized to one,

which it supplies inelastically.

We describe preferences of the representative household by a time-separable iso-elastic

utility function subject to preference shocks. In particular, the representative household
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evaluates consumption streams {C.} according to

E0

 ∞∫
0

e−βt+ξt
C1−γ

t

1− γ
dt

 .

We assume that the preference shock ξt evolves according to

dξt = (bt −
σ2
t

2
)dt+ σtdWt, (10)

dσt = −θσtdt+ vdWσt, Wσt = ρWt +
√
1− ρ2W ′

t . (11)

In our specification, stochastic σt implies that the representative household has a state-

dependent marginal utility with respect to consumption. Specifically, state-dependence is

driven by the same shocks as the productivity process. This specification can be viewed as

a reduced-form description of time-varying aversion to risk or time-varying beliefs.89 The

exact interpretation is not critical for our analysis. Our interpretation of the empirical

patterns is based on the time-varying discount rates, and does not hinge on the exact source

of discount rate variation. The process bt plays the role of time-varying subjective rate of

time preferences. This process does not affect the qualitative implications of our model

and is introduced for purely technical reasons, helping stabilize the risk-free interest rate in

equilibrium.

8If we set bt = 0 in the definition of ξt, our preference specification is isomorphic to a model of a
household with the same isoelastic preferences but distorted beliefs. In particular, under the distorted beliefs,
the Brownian motion (Wt) that drives the productivity process acquires a drift σt. Thus, the representative
household exhibits the time-varying degree of optimism or pessimism, and perceives the productivity process
as

dxt =

(
µ− σ2

X

2
+ σt

)
dt+ σX dW̃t, (12)

where W̃t is a Brownian motion under the subjective distorted beliefs of the representative household. Clearly,
such a distortion in beliefs affects the equilibrium discount rates.

9Our reduced-form description may reflect a variety of economic phenomena. The most immediate con-
nection is with the models emphasizing habit formation, e.g., Campbell and Cochrane (1999). Time-varying
discount rates also arise naturally as a result of the dynamic wealth re-distribution across a heterogeneous
population of market participants, e.g., Chan and Kogan (2002), Gârleanu and Panageas (2007), Guvenen
(2009).
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Financial markets and asset prices

We assume that there exists a complete set of zero-net-supply state-contingent claims, prices

of which are summarized by the state-price density process π > 0 and that the time-t price

of any long-lived asset with cash flow X is given by the bubble-free pricing equation

Et

[∫ ∞

t

πs

πt

Xs

]
dt.

We denote the equilibrium short-term risk-free rate by rt.

In addition to the state-contingent claims, we assume that the representative household

is endowed with a single stock share, which is a claim on the dividends of the representative

firm. Thus, the representative firm is all equity financed.10 The dividends are equal to output

net of investment costs and labor costs. Denoting the wages paid by the representative firm

by w, the aggregate dividend flow rate is

Dt = Yt −
a

λ
iλtKt − wtLt. (13)

3.2 Equilibrium

We adopt the standard definition of competitive equilibrium. In equilibrium, the represen-

tative household and the representative firm take prices of state-contingent claims and the

wage rate as given. The representative household maximizes its expected utility, while the

representative firm maximizes its market value. All markets clear.

Definition 1 The competitive equilibrium is described by a collection of stochastic processes

π∗, w∗
t , L

∗, C∗, Y ∗, K∗, i∗, and D∗, such that

10The assumption of equity financing for the representative firm is without loss of generality, since the
assumptions of the Modigliani-Miller theorem hold in our setting, and therefore the choice of capital structure
does not affect equilibrium policies.
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1. Y ∗, K∗, L∗, and i∗ satisfy the technological constraints (7) and (8).

2. C∗ and L∗ maximize the representative household’s objective, taking the state-price

density, dividends, and wages as given,

max
{C.,L.}

E0

 ∞∫
0

e−βt+ξt
C1−γ

t

1− γ
dt

 ,

subject to

E0

[∫ ∞

0

π∗
t

π∗
0

(Ct −D∗
t − w∗

tL
∗
t ) dt

]
= 0;

3. i∗, L∗, and D∗
t maximize the representative firm’s value, taking the state-price density

as given,

max
{i.,L.,D.}

E0

[∫ ∞

0

π∗
t

π∗
0

Dt dt,

]
,

subject to (7), (8), and (13).

4. Labor market clears,

L∗
t = 1,

and consumption market clears,

C∗
t = D∗

t + wtL
∗
t .

3.3 Solution

Since financial markets in our model are frictionless and there are no externalities, equilib-

rium consumption and investment policies can be determined by solving the central planner’s

problem. The central planner maximizes the expected utility of the representative household

E0

 ∞∫
0

e−βt+ξt
C1−γ

t

1− γ
dt

 . (14)
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subject to the aggregate resource constraint

Ct + It = Yt (15)

and to (8), (9), (10), (11).

Equilibrium prices can be recovered from the central planner’s solution for equilibrium

quantities using individual optimality conditions:

πt = e−βt+ξt
t (C∗

t )
−γ , (16)

and

w∗
t = (1− α)Y ∗

t . (17)

We solve for equilibrium numerically using finite-difference approximations. We first solve

the dynamic program of the central planner and determine equilibrium consumption and

investment policies, and the state-price density. We then compute the price of the aggregate

stock market as the expected value of future dividends discounted with the equilibrium

state-price density. We derive the risk-free interest rate as the negative of the drift of the

state-price density.

4 Calibration and Simulation Results

4.1 Parameter calibration

[Table 8]

The starting point of our calibration is the canonical real business-cycle model. Indeed, if

our model had no preference shocks, v = 0, θ = 0, ρ = 0, we could pick parameters that are

standard in the literature, simplifying calibration. We find that if we set the parameters not
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relating to preference shocks in that manner, we can successfully match all the unconditional

moments in Table 1 that do not relate to asset prices. We then pick the values of v, θ, and ρ

to reproduce the empirically observed moments for asset prices and the conditional moments

of Tables 2-5. This strategy is possible because most of the moments relating to quantities

are decoupled from preference shock parameters. For example, the steady-state level of the

investment rate is

E [it − kt] =
µ− σ2

X/2

(1− α)
+ δ, (18)

while the mean and volatility of output growth are given by

E [dyt] =
µ− σ2

X/2

(1− α)
(19)

st.dev. (dyt) = σX , (20)

which do not depend on any preference parameters.

We set the values for the model’s production technology to α = 0.33, µ = 0.015, σX =

0.03, a = 10 and λ = 5, which are similar to those find in the literature. For the standard

preference parameters, we pick a discount parameter of β = 0.02 and a reasonable coefficient

of relative risk aversion γ = 10.

We pick an auto-regressive coefficient for the preference shock of θ = 0.4, which represents

a half-life of about 7 quarters. Tables 4 and 5 show that this is exactly the horizon for which

investment has its strongest predictive force. While this persistence parameter helps control

the timing of predictability, we set the volatility of preference shocks to ν = 0.3 to match the

magnitude of predictability of stock volatility and returns. Finally, we set the correlation

between shocks to productivity and preference shocks to ρ = −0.9. The negative correlation

implies that times of low productivity coincide with times of high volatility.

To understand the mechanics of the model and gain further intuition into how different
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parameters affect our results, we analyze how macroeconomic variables and asset prices

respond to preference shocks.

[Figure 1]

Figure 1 shows the steady-state probability distribution function of the two state vari-

ables, the preference shock σ and profitability yt − kt. Since ρ < 0, they are negatively

correlated. Figure 2(a) shows how the investment rate and consumption (normalized by

capital) behave as a function of the state variables. Investment is decreasing in the prefer-

ence shock: a positive shock to marginal utility will, ceteris paribus, reduce investment and

increase consumption. On the other hand, investment is increasing in profitability, since the

latter is simply a capital-adjusted measure of productivity: yt − kt = xt + (α− 1)kt.

Figure 3 shows the impulse-response functions of the key variables to a positive preference

shock. Because the capital stock cannot change instantaneously but productivity xt decreases

when a positive preference shock hits the economy (because ρ < 0), profitability decreases

after the shock. The representative agent’s optimal response to a drop in productivity is to

reduce the investment rate. In addition, because the preference shock raises marginal utility,

the representative agent has an added incentive to invest less and consume more. Both

effects lead to a sharp decrease in investment. As the preference shock reverts to its mean,

investment slowly returns to its stead-state levels, with the speed of adjustment controlled

mainly by the convexity of adjustment costs.

Figure (4) shows the impulse response function for asset prices. Even though we have a

general equilibrium model and cash flows are not constant, the partial equilibrium intuition

of the Gordon formula given in the introduction still holds. In this case, an increase in the

cost of capital is associated with persistently high expected stock returns and low volatility.

Tables 9-12 confirm the result by replicating our empirical regressions using 2, 500 sample
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paths generated by the model and then computing the averages of regression coefficients,

t-statistics, and R2 across the simulated samples replications.

[Table 9]

[Table 10]

[Table 11]

[Table 12]

Simulation results suggest that our equilibrium model captures, at least qualitatively,

the key empirical patterns: the negative predictive relation between the investment rate and

future excess stock returns, and the positive relation between the investment rate and future

return volatility. Comparing the empirical numbers to simulation results, we identify two

areas for future improvements.

First, excess stock returns in the model are much more predictable than in the data,

as indicated by the high values of R2’s in Tables 11, 12. This may be partly because too

much of stock return volatility in the model is driven by the preference shocks. In addition,

since we know that high explanatory power for future excess stock returns can be obtained

using financial valuation ratios (e.g., Campbell and Cochrane (1999)), it appears that the

aggregate investment rate is a more precise proxy for the preference shocks in the model

than it is in the data.

Second, the hump-shaped pattern of the regression coefficients of stock return volatility

on the aggregate investment rate is an interesting feature of the data that is not captured by

the model. In our model, even though the effects on returns and volatility are persistent, the

largest responses occur contemporaneously with the arrival of shocks. Our model therefore

matches the observed empirical patterns at the frequencies of 4 to 6 quarters and onwards,

and over-estimates the effects of investment on volatility in the short run. A potential
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resolution of this discrepancy is to introduce transient components, either in the volatility of

productivity or in productivity itself. Indeed, Bloom (2009) considers exactly these type of

shocks and obtains a negative relation between investment and volatility of returns at short

horizons.

5 Conclusion

In this paper we establish a new empirical fact: the aggregate investment rate is strongly

positively correlated with future stock market volatility. Together with the well-known

negative relationship between the investment rate and subsequent excess stock returns, this

implies that, conditionally on the aggregate investment rate, stock market exhibits a negative

mean-variance tradeoff. We interpret these empirical patterns using a general-equilibrium

production economy model. In our model, the qualitative empirical correlation patterns

among the aggregate investment and productivity on one hand, and the conditional moments

of the stock market returns on the other hand, arise because of time-varying discount rates.

Thus, our paper emphasizes the importance of time-varying discount rates for understanding

not only the behavior of financial markets, but also for interpreting the dynamics of the key

macroeconomic variables.

We are working on extending our model to incorporate the negative short-term correlation

between stock-return volatility and subsequent real investment. Together with the results

obtained in this paper, the extended model should further clarify the respective roles played

by the technology and preference shocks in shaping the observed joint dynamics of aggregate

investment and financial asset returns.
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6 Appendix: Solution and Numerical Procedure

6.1 Central’s Plannner’s Problem

The value function J(ξ, σ, x,K) of the central planner’s problem satisfies the following HJB

equation:

max
i

[
eξ
[
exKα − a

λ
iλK

]1−γ

1− γ
+ iKJK

]
− δKJK − θσJσ + (b− σ2

2
)Jξ + (21)

(µ− σ2
X

2
)Jx +

v2

2
Jσσ +

σ2

2
Jξξ +

σ2
X

2
Jxx + ρσXvJxσ + ρσvJξσ + σσXJxξ = βJ.

We look for solutions of the form

J(ξ, σ, x,K) =
eξ+(1−γ)k

1− γ
V (σ, z), (22)

where

z ≡ x+ (α− 1)k.

Substituting (22) back into (21) and using

Jξ = Jξξ =
eξ+(1−γ)k

1− γ
V,

KJK =
eξ+(1−γ)k

1− γ
[(1− γ)V + (α− 1)Vz],

Jx = Jxξ =
eξ+(1−γ)k

1− γ
Vz,

Jxx =
eξ+(1−γ)k

1− γ
Vzz,

Jxσ =
eξ+(1−γ)k

1− γ
Vzσ,

we obtain

(ez − a

λ
(i∗)λ)1−γ + LV = 0 (23)
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where Dynkin operator L has the following form

L = (ρv − θ)σ
∂

∂σ
+

[
µ+ σσX − σ2

X

2
− (1− α) (i∗ − δ)

]
∂

∂z
+ (24)

+
v2

2

∂2

∂σ2
+

σ2
X

2

∂2

∂z2
+ ρσXv

∂2

∂σ∂z
− [β − b− (1− γ) (i∗ − δ)] .

The optimal investment rate, i∗, satisfies

a (i∗)λ−1 =

[
V − 1− α

1− γ
Vz

] [
ez − a

λ
(i∗)λ

]γ
. (25)

6.2 Stock Price

The stock price is given by the discounted sum of dividends:

St = e−ξtEt

 ∞∫
t

e−β(s−t)+ξs

(
C∗

t

C∗
s

)γ

Dsds

 = e−ξt (C∗
t )

γ α(1− γ)J(ξt, σt, xt, Kt)− (26)

−(1− α)e−ξt (C∗
t )

γ Et

 ∞∫
t

e−β(s−t)+ξs+(1−γ)ks

(
C∗

s

Ks

)−γ
a

λ
(i∗s)

λ ds

 =

= Kt

(
C∗

t

Kt

)γ

[αV (σt, zt)− (1− α)Φ(σt, zt)] ,

where the Feynman-Katz forumal implies that Φ(σt, zt) satisfies the following PDE

a
λ
(i∗)λ(

ez − a
λ
(i∗)λ

)γ + LΦ = 0. (27)
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6.3 Steady state distribution

The joint steady state distribution of (σ, z), p∞(z, σ), satisfies the following Kolmogorov

backward equation

−
[
θ + (1− α)

∂i∗

∂z

]
p∞(z, σ) = −θσ

∂p∞(z, σ)

∂σ
+

[
µ− σ2

X

2
− (1− α) (i∗ − δ)

]
∂p∞(z, σ)

∂z
+(28)

+
v2

2

∂2p∞(z, σ)

∂σ2
+

σ2
X

2

∂2p∞(z, σ)

∂z2
+ ρσXv

∂2p∞(z, σ)

∂σ∂z
.

This equation is solved so that the probability density function integrates to one:

∞∫∫
−∞

p∞(z, σ)dzdσ = 1.

6.4 Numerical Procedure

We discretize the HJB equation on the (σ, z) using the following approximations:

Vz =
V (z +∆z, σ)− V (z, σ)

∆z

, if σ ≥ 0 (29)

Vz =
V (z, σ)− V (z −∆z, σ)

∆z

, if σ < 0 (30)

Vσ =
V (z, σ +∆σ)− V (z, σ)

∆σ

, if (ρv − θ)σ ≥ 0 (31)

Vσ =
V (z, σ)− V (z, σ −∆σ)

∆σ

, if (ρv − θ)σ < 0

Since (µ+ (1− α) δ) ≥ 0, (σ2
X/2 + (1− α) i) ≥ 0, we use the one-sided approximation for

the second derivatives:

Vσσ =
V (z, σ +∆σ) + V (z, σ −∆σ)− 2V (z, σ)

∆2
σ

Vzz =
V (z +∆z, σ) + V (z −∆z, σ)− 2V (z, σ)

∆2
z.
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For the cross-partials, we use

Vσz =
2V (z, σ) + V (z +∆z, σ +∆σ) + V (z −∆z, σ −∆σ)

2∆z∆σ

−

−
[
V (z +∆z, σ) + V (z −∆z, σ) + V (z, σ +∆σ) + V (z, σ −∆σ)

2∆z∆σ

]
, (32)

if ρ ≥ 0 and

Vσz = −
[
2V (z, σ) + V (z +∆z, σ −∆σ) + V (z −∆z, σ +∆σ)

2∆z∆σ

]
+ (33)

+

[
V (z +∆z, σ) + V (z −∆z, σ) + V (z, σ +∆σ) + V (z, σ −∆σ)

2∆z∆σ

]
(34)

if ρ < 0. We define the transition probabilities between the discretized points to be:

p((z, σ) → (z, σ +∆σ) |i) =
1

Q∆

[
[(ρv − θ)σ]+ ∆σ∆

2
z +

v2

2
∆2

z −
σXv |ρ|

2
∆σ∆z

]
p((z, σ) → (z, σ −∆σ) |i) =

1

Q∆

[
[(ρv − θ)σ]−∆σ∆

2
z +

v2

2
∆2

z −
σXv |ρ|

2
∆σ∆z

]
p((z, σ) → (z +∆z, σ) |i) =

1

Q∆

[(
µ+ (1− α)δ + [σ]+ σX

)
∆2

σ∆z +
σ2
X

2
∆2

σ −
σXv |ρ|

2
∆σ∆z

]
p((z, σ) → (z −∆z, σ) |i) =

1

Q∆

[[
σ2
X

2
+ (1− α)i∗ + [σ]− σX

]
∆2

σ∆z +
σ2
X

2
∆2

σ −
σXv |ρ|

2
∆σ∆z

]
p((z, σ) → (z +∆z, σ +∆σ) |i) = p((z, σ) → (z −∆z, σ −∆σ) |i) =

1

Q∆

[
σXv [ρ]

+

2
∆σ∆z

]
p((z, σ) → (z −∆z, σ −∆σ) |i) = p((z, σ) → (z +∆z, σ −∆σ) |i) =

1

Q∆

[
σXv [ρ]

−

2
∆σ∆z

]

where

Q∆((z, σ) , i) = |(ρv − θ)σ|∆σ∆
2
z +

[
µ+ σX |σ|+ σ2

X

2
+ (1− α) (i∗ + δ)

]
∆2

σ∆z +

+v2∆2
z + σ2

X∆
2
σ − σXv |ρ| ∆σ∆z
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and

β̃ = β − b− (1− γ) (i∗ − δ)

The transition probabilities are positive if

v∆z

|ρ|σX

> ∆σ >
v |ρ|∆z

σX

.

Plugging in the approximations into the HJB equation and using the definitions above, we

get:

V (z, σ)

[
1 +

∆2
σ∆

2
z

Q∆
β̃

]
=

(ez − a
λ
(i∗)λ)1−γ

1− γ

∆2
σ∆

2
z

Q∆
+
∑
s∈S

V (s)p((z, σ) → s)

where S is the set of nearest neighbors of (z, σ). The discretized Bellman equation is:

V (z, σ) = max
i

{
(ez − a

λ
(i∗)λ)1−γ

1− γ

∆t

1 + β̃∆t
+

1

1 + β̃∆t
Et [V (z′, σ′)|(z, σ)]

}

with

∆t =
∆2

σ∆
2
z

Q∆

and

β̃ = [β − b− (1− γ) (i∗ − δ)] .

We solve the Bellman equation using policy iteration.

6.5 Steady state distribution

After solving the HJB equation, the steady state is given by the eigenvector of the transpose

of the transition probability matrix associated with the eigenvalue of 1, and then normalized

so that it integrates to unity.
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Table 1: Summary Statistics
This table reports the summary statistics of data and model output. It is the real gross private domestic

investment (GPDI), Yt is the real gross domestic product (GDP), Kt is the real capital stock, ∆ct is the

real consumption growth, ∆yt is the real GDP growth, ∆it is the GPDI growth, rt is the market return

(value-weighted CRSP index), rft is the risk-free rate (3-month T-Bill yield), and volt is the time series for

the natural log of the realized market volatility. Lowercase letters represent natural logarithms. The sample

is quarterly and spans the period from 1947 to 2009. Model is simulated 2,000 times using parameters

reported in Table 8 and the averages across simulations are reported.

Data Model
E[it − kt] -2.5915 -2.6562
std[it − kt] 0.0961 0.0798
E[yt − kt] -0.0277 -7.3794
std[yt − kt] 0.0677 0.0758
E[rt] 0.0266 0.0184
std[rt] 0.0806 0.0621
E[volt] -2.7158 -2.9239
std[volt] 0.4015 0.1736

E[rft ] 0.0122 0.0061

std[rft ] 0.0068 0.0078
Sharpe Ratio 0.1787 0.1981
E[∆ct] 0.0083 0.0054
std[∆ct] 0.0045 0.0053
E[∆yt] 0.0086 0.0054
std[∆yt] 0.0124 0.0150
E[∆it] 0.0088 0.0052
std[∆it] 0.0470 0.0398
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Table 8: Calibration Parameters
This table reports parameters used to calibrate the model.

Preferences:
Risk Aversion γ 10
Intertemporal Discount Parameter β 0.02
Preference Shock ξt: Mean Reversion Rate θ 0.4
Preference Shock ξt: Volatility υ 0.3
Subjective Rate of Time Preferences: bt = B0 + B1σ2

t B0 0.10
B1 0.075

Technology:
Capital Elasticity α 0.33
Productivity Shock: Mean µ 0.015
Productivity Shock: Variance σX 0.03
Depreciation Rate δ 0.05
Adjustment Costs Scale Parameter a 10
Adjustment Costs Elasticity to Investment Rate λ 5
Correlation Between dWt and dWσt ρ −0.9
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Figure 2: Investment and consumption as a function of the state variables σ and y − k
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Figure 3: Model’s impulse response function of the investment rate, profitability and con-
sumption after a preference shock
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Figure 4: Model’s impulse response function of the risk-free rate, expected stock returns and
volatility of stock returns after a preference shock
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