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Abstract

In this paper we study the relation between returns on the aggregate stock market and
aggregate real investment. While it is well known that the aggregate investment rate
is negatively correlated with subsequent excess stock market returns, we find that it is
positively correlated with future stock market volatility. Thus, conditionally on past
aggregate investment, the mean-variance tradeoff in aggregate stock returns is negative.
We interpret these patterns within a general equilibrium production economy. In our
model, investment is determined endogenously in response to two types of shocks:
shocks to productivity and preference shocks affecting discount rates. Preference shocks
affect expected stock returns, aggregate investment rate, and stock return volatility in
equilibrium, helping model reproduce the empirical relations between these variables.
Thus, our results emphasize that the time-varying price of aggregate risk plays and

important role in shaping the aggregate investment dynamics.
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1 Introduction

In this paper we explore the relation between aggregate real investment and stock market
volatility, an important aspect of the broader relation between financial markets and the
real economy. In a recent influential paper, Bloom (2009) analyzes the impact of large
transient volatility shocks on aggregate investment. We focus on a different aspect of the joint
dynamics of volatility and investment, relating aggregate investment to persistent changes
in return volatility. We document a new empirical pattern: high aggregate investment
rate forecasts persistently high subsequent market volatility. It is well known (e.g., Abel
(1983), Caballero (1991)) that the sign of the investment-volatility relation depends on the
structure of the economic environment. To help narrow down the range of possible structural
explanations for the observed positive correlation between aggregate real investment and
expected future stock market volatility, we rely on the additional empirical patterns in the
joint dynamics of stock returns, investment, and output.

An important feature of the stock return-investment dynamics is negative correlation
between aggregate investment rate and subsequent excess stock market returns, studied in
Cochrane (1991).!

In our model, time-varying discount rates generate both the negative relation between
investment and future excess returns and the positive relation between aggregate investment
and future stock market volatility. The first relation is well understood. It is consistent with
the basic partial-equilibrium intuition that, ceteris paribus, an exogenous decline in discount
rates should increase the net present value of potential investment projects, and thus should

raise the aggregate investment rate.

IThe relation between investment and subsequent excess stock market returns has also been studied in
the cross-section of firms, e.g., Titman, Wei, and Xie (2004), Chen, Novy-Marx, and Zhang (2010), Kogan
and Papanikolaou (2010).



To see the intuition behind the second relation, consider the classic Gordon model for
stock valuation. The price of the stock is proportional to the expected future dividend, and
inversely proportional to the difference between the expected growth rate of dividends, and

the discount rate, both assumed constant:

P[): 3 (1)

where time is discrete, Py is the stock price at time 0, E¢[D] is the expected time-1 dividend,
r denotes the cost of capital, and g denotes the expected dividend growth rate. Assume,
furthermore, that dividend growth is homoscedastic, so heteroscedastic stock return volatility
is not generated mechanically by a similar pattern in cash flows. Consider a comparative-
statics experiment: holding the expected future dividends fixed, reduce the discount rate
by a small amount. This has an effect of increasing the stock price at time 0, which is a
well-known effect of time-varying discount rates on the volatility in stock returns. Note that
the magnitude of the impact of a discount rate change on the stock price depends on the
initial difference between the discount rate and the expected growth rate: if r — g is relatively
low, the same change in the discount rate has larger impact on the stock price than it would
at higher levels of r — g. This simple observation prompts a conjecture: if discount rates
experience homoscedastic shocks, an exogenous decline in discount rates should give rise
to higher future return volatility. Since a decline in discount rates also naturally leads to
an increase in the aggregate investment rate, we thus conclude that time-varying discount
rates may give rise to a positive correlation between real investment and future stock market
volatility.

The above conjecture is based on ad hoc arguments ignoring the general equilibrium

considerations and liberally using comparative statics in lieu of rigorous dynamic analysis.



We formalize these arguments using a general-equilibrium production economy model. The
economy in our model is affected by two types of shocks: productivity shocks and preference
shocks. Our framework is very similar to canonical real business cycle models in its treatment
of production. The only deviation from the standard setting is in our assumption that
the representative household is subject to preference shocks. Effectively, preference shocks
generate exogenous variation in risk aversion of the representative household, and with it
variation in the market prices of risk. We calibrate our model to match the key unconditional
moments of consumption growth and financial asset returns. We then verify that our model
generates the same qualitative predictive relations as we document empirically and comes
close in replicating the magnitude of the observed effects.

Our analysis further supports the idea that accounting for the time-varying price of risk
in financial markets is important for understanding the dynamics of real economic activity.
Modern asset pricing literature has emphasized the significance of time-varying price of risk,
or return predictability, for understanding the key properties of asset return behavior, such
as excess volatility of asset returns and high equity premium (e.g., Campbell and Cochrane
(1999), Cochrane (1999)). Our paper adds to this body of work by arguing that time-varying
price of risk may also be the cause of persistent changes in return volatility that we document.
Thus, we tie together the core asset pricing results on return predictability and the growing
literature on the connections between real economic activity and time-varying uncertainty
(e.g., Bernanke (1983), Leahy and Whited (1996), Bloom, Bond, and Reenen (2007), Bloom
(2009)). As shown in Bloom (2009), stock market volatility is a key indicator of economic
uncertainty. Our analysis in this paper offers an economic interpretation of the empirical
relations between market volatility and real investment.

The rest of the paper is organized as follows. Section 2 describes the data and empirical



results. Section 3 presents the theoretical model. Section 4 presents calibration results and

robustness checks. Section 5 concludes.

2 Empirical Results
2.1 Data and procedures

Our sample starts 1947Q1 and ends 2009Q3 for a total of 251 quarters.? We use lowercase
letters for logs of all variables throughout this section and the rest of the paper.

As a measure of aggregate stock returns, we use returns on the CRSP value weighted
portfolio, available from Kenneth French’s website. We construct quarterly returns, r;,® from
the daily returns. To construct excess returns, we subtract the three-month T-bill rate, rf ,
available from the Federal Reserve Bank of St. Louis.

We also use quarterly data on realized volatility. Specifically, we construct a quarterly
series vol, defined as the log of the standard deviation of daily returns within quarter ¢.*
We find that our results are robust to Winsorizing the volatility series or using alternative
measures of realized volatility, such as absolute values of quarterly returns.

Quarterly data for the macroeconomic variables is from U.S. National Income and Prod-

uct Accounts (NIPA) available directly from the Bureau of Economic Analysis (BEA).? These

include real® Gross Domestic Product, Y;, or GDP (Table 1.1.6, item 1) and Gross Private

2We find that excluding the 2008-2009 period from our sample has no effect on the qualitative results,
and has only minor effect on the point estimates. Thus, our conclusions are robust to excluding the financial
crises period. We also find that our conclusions are unchanged if we exclude the immediate post-war period
of 1947-1952.

37, is log cumulative return on the value-weighted portfolio of NYSE, NASDAQ, and AMEX stocks.

4For example, in order to obtain the standard deviation of the market return for 1952Q1, we use time
series of daily market returns from January 1, 1952 to March 31, 1952, calculate its standard deviation and
re-scale its value by the square root of the number of sample data points for this time period.

5In 2003, the BEA undertook comprehensive revisions of all NIPA data series. Our data incorporates
these revisions.

6These are given in billions of chained (2005) dollars.



Domestic Investment, [, or GPDI (Table 1.1.6, item 7). Quarterly capital stock values, K,
are interpolated from annual values using the quarterly GPDI data for investment flows and
Private Fixed Assets (PFA) as the annual capital stock measure, with year-end 1946 as the
starting point. The annual time series for nominal PFA are taken from the Fixed Asset Ta-
bles (Table 1.1, item 3). For each quarter a fraction of the annual capital increment is added
to the current end-of-year stock, with the fraction given as the year’s investment to date, di-
vided by total investment. For investment we use nominal quarterly GPDI (Table 1.1.5, item
7). Quarterly nominal capital is deflated by the price index for gross domestic investment to
generate real quarterly capital at replacement value. Unlike the standard inventory-based
method of constructing capital stock (e.g., Cochrane (1991)), the above method does not

rely on any particular model of capital accumulation.

2.2 Empirical findings

Summary statistics

We use two variables in predictive regressions. The first is the natural log of the investment
rate, iy — k; = In(I;/K;), where investment rate is measured as the ratio of the quarterly
GPDI to the end-of-quarter capital stock (our timing convention is analogous to the one
used in defining trailing dividend yield). The second variable, y, — k; = In(Y;/K;), is the log
of the ratio of quarterly output to the end-of-quarter capital stock. We view this variable as
a proxy for average profitability in the economy.”

We start by summarizing the key moments of investment, profitability, and financial asset
returns in our sample.

[Table 1 |

7Our interpretation is justified as long as the output share of capital is approximately constant. Alterna-
tively, one may simply view the two variables as jointly approximating the state vector in the economy.



In addition to the first two moments of the key variables, we estimate their auto-
correlation. We find that profitability is highly persistent in our sample, with an eight-quarter
autocorrelation coefficient of 0.86. Aggregate investment rate shows much less persistence,
with autocorrelations declining to 0.24 and below beyond the four-quarter horizon. Con-
sistent with commonly reported results, consumption and output growth rates exhibit very
little autocorrelation. Investment growth is also close to being uncorrelated over time. Stock
returns are virtually uncorrelated over time, but stock return volatility is persistent. Auto-
correlations of volatility decline at a relatively slow rate, starting at 0.66 at a one-quarter
horizon and declining to 0.44 and 0.21 at four and eight-quarter horizons respectively. This
pattern of decline suggests that market volatility possesses more persistence than what could
be generated by a simple first-order autoregressive specification. Our results in Table 4 re-

inforce this observation.
Predictability of excess stock returns and return volatility

We first analyze predictability of stock returns. Tables 2 and 3 report predictive regressions
of single-quarter and multi-quarter excess stock returns on lagged values of investment rate
and profitability. Our regressions extend the results in Cochrane (1999) to our longer sample

and to a more general specification. We run two predictive regressions:

Tewh — Tfiph = Qo + a1 (iy — Ky) + €4 pqn (2)
and
Tith — Tiipn = Qo + a1(8 — ki) + ao(ye — ki) + e (3)

Before running these regressions, we de-trend all right-hand-side variables. We do this so that

low-frequency movements in the variables under consideration do not drive our results, since



we cannot evaluate statistical significance of such effects in our sample. De-trending has little
effect on the predictive regressions for returns, but is potentially important for predictive
regressions of return volatility below, since return volatility exhibits some low-frequency
persistence. As a robustness check, we perform the same regression on the original series,
and find qualitatively similar results.

In the second specification, we include profitability as a second predictive variable in
addition to the investment rate. The predictive relation between the investment rate and
future excess stock returns indicates time-variation in expected stock returns. According to
conventional intuition, the aggregate investment rate is negatively affected by the discount
rates on future projects because higher discount rates imply lower net present value of cash
flows produced by new investments. Therefore, as long as discount rates on cash flows from
new investments and on those produced by existing assets are not too different, it is natural
that the investment rate is negatively correlated with future excess stock returns. This ar-
gument can be refined by observing that investment decisions are affected by profitability of
new investment projects in addition to their discount rates. Persistence of aggregate prof-
itability (see Table 1) suggests that lagged aggregate profitability may be a useful predictor
of future profitability of new investments, as long as profitability of new projects is not too
different from profitability of existing physical assets. Therefore, aggregate profitability is
a potentially useful control in predictive regression of excess stock returns on the lagged
aggregate investment rate.

It is worth noting at this point that, while our regressions are inspired by the common
intuition, our interpretation of the empirical results relies on a fully specified general equi-
librium model that we develop in the following sections. In the model, some of the vague

statements used in the previous intuitive argument are not necessary. All of the relevant



variables are derived endogenously in equilibrium, and relations between them can be quan-
tified. For instance, discount rates on cash flows from new investments are equal to those on
cash flows from existing assets, and thus the aggregate investment rate is a useful predictor
of future excess stock returns. In anticipation of the formal equilibrium analysis below, we
note that in our model economy there are two structural shocks: shocks to productivity and
preference shocks. Discount rates, as well as profitability, are affected by both shocks in equi-
librium. Without arguing further that investment rate and profitability are each primarily
affected by a single structural shock, the two-shock structure of the model implies that the
two-variable predictive regression emerges as a natural agnostic linear approximation to the
model’s equilibrium relation between the conditional moments of financial asset returns and
equilibrium state variables.
[Table 2]

As in Cochrane (1999), we find that the investment rate predicts future excess stock
returns negatively. Adding lagged profitability as a control does not seem to affect the
results substantially, and coefficients on lagged profitability are not statistically significant.

In Table 5, we report analogous predictive regressions for a cumulative sum of excess
stock returns over multiple quarters. These regressions highlight the joint significance of
predictability in excess returns at multiple horizons. The explanatory power of these regres-
sions is quite low, but there is evidence of predictability in returns at horizons up to 16
quarters.

[Table 3]
We next summarize the results on predictability of stock return volatility in Tables 4

and 5. In Table 4, we report the results of a univariate predictive regression of volatility on



lagged investment rate,

volyyn = ao + a1 (iy — k) + €t pvn (4)

and of multivariate regressions, adding lagged profitability and lagged realized volatility to

the forecasting equation:

volypn, = ag + a1 (i — ky) + ao(ye — ke) + ereqna (5)

and

VOltJrh = agp + a; (Zt — kt) + ag(yt — kt) + a3VOlt,1 + Ett+h+1 (6)

As in Tables 3, we use both the investment rate and profitability in predictive regressions.
[Table 4]

The investment rate predicts future return volatility with a positive sign at all horizons
up to 16 quarters. This pattern is stronger and has higher statistical significance in a two-
variable regression, which also includes aggregate profitability.

In the third panel of Table 4, we add lagged realized volatility to the regression. We do this
for two reasons. First, as shown in Bloom (2009), market volatility has a negative impact on
future investment at short horizons. Our model is not flexible enough to capture this pattern,
but such a relation may affect our empirical findings. In particular, at relatively short
horizons, it may weaken the positive relation between investment rate and future market
volatility produced by our current specification. We find that adding lagged volatility leaves
the results qualitatively unchanged, while significance and point estimates of coefficients on
investment rate increase at short horizons.

Second, realized volatility is a noisy proxy for the true conditional volatility, and it is

useful to see how well realized volatility can predict its own future values compared to the two



macro-economic state variables we use in our regressions. Comparing the first panel of Table
4 with the results in Table 1, we find that investment rate and profitability jointly explain
16 percent of variation in realized return volatility at an eight-quarter horizon, while lagged
realized volatility explains only four percent of its own future variation. The pattern of R*’s
is consistent with this observation. Adding lagged volatility to the forecasting regression
significantly boosts its explanatory power at short horizons, for instance, raising the R?
from 0.03 to 0.20 at a one-quarter horizon, but has negligible effect at horizons longer that
six quarters. This indicates that there are sources of short-horizon predictability in return
volatility not captured by our predictive variables.

[Table 5]

In Table 5, we report analogous predictive regressions for a cumulative sum of realized
intra-quarter volatility over multiple quarters. These regressions highlight the joint signifi-
cance of predictability in volatility at multiple horizons. We find that the investment rate is
a highly statistically significant predictor of future stock return volatility at horizons up to
16 quarters. Profitability enters negatively in a multi-variate forecasting regression, and is
marginally statistically significant. Lagged realized volatility enters positively, and is highly
statistically significant. The pattern of coefficients and t-statistics on lagged volatility is

consistent with its predictive ability being relatively short-lived.

3 The Model

3.1 Formulation

Technology

We assume that there exists a competitive representative firm. This firm uses capital and

labor to produce a single consumption good. We denote the capital stock by K;, the input of

10



labor by L;, and the flow of output by Y;. We assume the standard Cobb-Douglas production
function

Y= e KP L, (7)

where the productivity shock x; follows

2
da, = (u - %X) dt + o dW,.

We assume that capital depreciates at the constant rate § and can be replenished through

investment. Denoting the investment rate by 4,

We assume that new capital can be created from the consumption good subject to convex
adjustment costs, so that the flow cost of creating new capital at the investment rate ¢, is
given by

a .
It = XZ?Kta (9)

where A\ > 1. Thus, the marginal cost of capital creation, measured in units of the consump-

tion good, is positively related to the investment rate.
Households

We model households as a representative consumer. The representative agent owns the
representative firm and supplies labor competitively in the labor market. We assume that
the representative household is endowed with a constant flow of labor, normalized to one,
which it supplies inelastically.

We describe preferences of the representative household by a time-separable iso-elastic

utility function subject to preference shocks. In particular, the representative household
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evaluates consumption streams {C'} according to

o0

1—y
Eo /eﬁtJr&Ct—dt
0 1=

We assume that the preference shock &; evolves according to

2

de, = (b — %t)dt + o, dW,, (10)

dUt = —Qatdt + UdWO—t, Wo‘t = th + 1-— pZVVt/ (11)

In our specification, stochastic o; implies that the representative household has a state-
dependent marginal utility with respect to consumption. Specifically, state-dependence is
driven by the same shocks as the productivity process. This specification can be viewed as
a reduced-form description of time-varying aversion to risk or time-varying beliefs.®® The
exact interpretation is not critical for our analysis. Our interpretation of the empirical
patterns is based on the time-varying discount rates, and does not hinge on the exact source
of discount rate variation. The process b; plays the role of time-varying subjective rate of
time preferences. This process does not affect the qualitative implications of our model
and is introduced for purely technical reasons, helping stabilize the risk-free interest rate in

equilibrium.

8If we set by = 0 in the definition of &;, our preference specification is isomorphic to a model of a
household with the same isoelastic preferences but distorted beliefs. In particular, under the distorted beliefs,
the Brownian motion (W;) that drives the productivity process acquires a drift o;. Thus, the representative
household exhibits the time-varying degree of optimism or pessimism, and perceives the productivity process
as

2 —~
dl‘t = (/J, — O-TX + O't) dt +ox th, (12)

where Wt is a Brownian motion under the subjective distorted beliefs of the representative household. Clearly,
such a distortion in beliefs affects the equilibrium discount rates.

90ur reduced-form description may reflect a variety of economic phenomena. The most immediate con-
nection is with the models emphasizing habit formation, e.g., Campbell and Cochrane (1999). Time-varying
discount rates also arise naturally as a result of the dynamic wealth re-distribution across a heterogeneous
population of market participants, e.g., Chan and Kogan (2002), Géarleanu and Panageas (2007), Guvenen
(2009).

12



Financial markets and asset prices

We assume that there exists a complete set of zero-net-supply state-contingent claims, prices
of which are summarized by the state-price density process m > 0 and that the time-t price

of any long-lived asset with cash flow X is given by the bubble-free pricing equation

E, { / EXS} dt.
Y

We denote the equilibrium short-term risk-free rate by r;.

In addition to the state-contingent claims, we assume that the representative household
is endowed with a single stock share, which is a claim on the dividends of the representative
firm. Thus, the representative firm is all equity financed.!® The dividends are equal to output
net of investment costs and labor costs. Denoting the wages paid by the representative firm

by w, the aggregate dividend flow rate is
a
Dt = }/;5 — X/Lt Kt — tht' (13)

3.2 Equilibrium

We adopt the standard definition of competitive equilibrium. In equilibrium, the represen-
tative household and the representative firm take prices of state-contingent claims and the
wage rate as given. The representative household maximizes its expected utility, while the

representative firm maximizes its market value. All markets clear.

Definition 1 The competitive equilibrium is described by a collection of stochastic processes

™, wy, L*, C*, Y*, K*, i*, and D*, such that

10The assumption of equity financing for the representative firm is without loss of generality, since the
assumptions of the Modigliani-Miller theorem hold in our setting, and therefore the choice of capital structure
does not affect equilibrium policies.
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1. Y*, K*, L*, and i* satisfy the technological constraints (7) and (8).

2. C* and L* maximize the representative household’s objective, taking the state-price

density, dividends, and wages as given,

o0

c,
max E, /eﬁ”&t—dt
{C.L} I—x

Y

0

subject to

Eo [/ W—Z(Ot—DZ—w;‘Lf)dt}zo;
o To

3. 1%, L*, and D; mazimize the representative firm’s value, taking the state-price density

as given,

max Eg {/ W—iDtdt,} ,
{i.,L.D.} 0o T

subject to (7), (8), and (13).

4. Labor market clears,

and consumption market clears,
C; = D; +wL;.

3.3 Solution

Since financial markets in our model are frictionless and there are no externalities, equilib-
rium consumption and investment policies can be determined by solving the central planner’s

problem. The central planner maximizes the expected utility of the representative household

Eo / e P gt (14)
0 b= 7
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subject to the aggregate resource constraint

and to (8), (9), (10), (11).
Equilibrium prices can be recovered from the central planner’s solution for equilibrium

quantities using individual optimality conditions:
mo=e T (C) T, (16)

and

w; = (1 —a)Y}. (17)

We solve for equilibrium numerically using finite-difference approximations. We first solve
the dynamic program of the central planner and determine equilibrium consumption and
investment policies, and the state-price density. We then compute the price of the aggregate
stock market as the expected value of future dividends discounted with the equilibrium
state-price density. We derive the risk-free interest rate as the negative of the drift of the

state-price density.

4 Calibration and Simulation Results
4.1 Parameter calibration

[Table 8]
The starting point of our calibration is the canonical real business-cycle model. Indeed, if
our model had no preference shocks, v =0, 8 = 0, p = 0, we could pick parameters that are

standard in the literature, simplifying calibration. We find that if we set the parameters not
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relating to preference shocks in that manner, we can successfully match all the unconditional
moments in Table 1 that do not relate to asset prices. We then pick the values of v, 6, and p
to reproduce the empirically observed moments for asset prices and the conditional moments
of Tables 2-5. This strategy is possible because most of the moments relating to quantities
are decoupled from preference shock parameters. For example, the steady-state level of the

investment rate is

p—o%/2

Eliy — k] = =)

+ 0, (18)
while the mean and volatility of output growth are given by

Eldy] = “(%;f (19)

st.dev. (dy;) = ox, (20)

which do not depend on any preference parameters.

We set the values for the model’s production technology to v = 0.33, u = 0.015, ox =
0.03, a = 10 and A = 5, which are similar to those find in the literature. For the standard
preference parameters, we pick a discount parameter of 5 = 0.02 and a reasonable coefficient
of relative risk aversion vy = 10.

We pick an auto-regressive coefficient for the preference shock of 8 = 0.4, which represents
a half-life of about 7 quarters. Tables 4 and 5 show that this is exactly the horizon for which
investment has its strongest predictive force. While this persistence parameter helps control
the timing of predictability, we set the volatility of preference shocks to v = 0.3 to match the
magnitude of predictability of stock volatility and returns. Finally, we set the correlation
between shocks to productivity and preference shocks to p = —0.9. The negative correlation
implies that times of low productivity coincide with times of high volatility.

To understand the mechanics of the model and gain further intuition into how different

16



parameters affect our results, we analyze how macroeconomic variables and asset prices
respond to preference shocks.
[Figure 1]

Figure 1 shows the steady-state probability distribution function of the two state vari-
ables, the preference shock o and profitability y; — k;. Since p < 0, they are negatively
correlated. Figure 2(a) shows how the investment rate and consumption (normalized by
capital) behave as a function of the state variables. Investment is decreasing in the prefer-
ence shock: a positive shock to marginal utility will, ceteris paribus, reduce investment and
increase consumption. On the other hand, investment is increasing in profitability, since the
latter is simply a capital-adjusted measure of productivity: v, — k; = x4 + (o — 1)ky.

Figure 3 shows the impulse-response functions of the key variables to a positive preference
shock. Because the capital stock cannot change instantaneously but productivity x; decreases
when a positive preference shock hits the economy (because p < 0), profitability decreases
after the shock. The representative agent’s optimal response to a drop in productivity is to
reduce the investment rate. In addition, because the preference shock raises marginal utility,
the representative agent has an added incentive to invest less and consume more. Both
effects lead to a sharp decrease in investment. As the preference shock reverts to its mean,
investment slowly returns to its stead-state levels, with the speed of adjustment controlled
mainly by the convexity of adjustment costs.

Figure (4) shows the impulse response function for asset prices. Even though we have a
general equilibrium model and cash flows are not constant, the partial equilibrium intuition
of the Gordon formula given in the introduction still holds. In this case, an increase in the
cost of capital is associated with persistently high expected stock returns and low volatility.

Tables 9-12 confirm the result by replicating our empirical regressions using 2,500 sample
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paths generated by the model and then computing the averages of regression coefficients,
t-statistics, and R? across the simulated samples replications.

[Table 9]

[Table 10]

[Table 11]

[Table 12]

Simulation results suggest that our equilibrium model captures, at least qualitatively,
the key empirical patterns: the negative predictive relation between the investment rate and
future excess stock returns, and the positive relation between the investment rate and future
return volatility. Comparing the empirical numbers to simulation results, we identify two
areas for future improvements.

First, excess stock returns in the model are much more predictable than in the data,
as indicated by the high values of R?’s in Tables 11, 12. This may be partly because too
much of stock return volatility in the model is driven by the preference shocks. In addition,
since we know that high explanatory power for future excess stock returns can be obtained
using financial valuation ratios (e.g., Campbell and Cochrane (1999)), it appears that the
aggregate investment rate is a more precise proxy for the preference shocks in the model
than it is in the data.

Second, the hump-shaped pattern of the regression coefficients of stock return volatility
on the aggregate investment rate is an interesting feature of the data that is not captured by
the model. In our model, even though the effects on returns and volatility are persistent, the
largest responses occur contemporaneously with the arrival of shocks. Our model therefore
matches the observed empirical patterns at the frequencies of 4 to 6 quarters and onwards,

and over-estimates the effects of investment on volatility in the short run. A potential
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resolution of this discrepancy is to introduce transient components, either in the volatility of
productivity or in productivity itself. Indeed, Bloom (2009) considers exactly these type of
shocks and obtains a negative relation between investment and volatility of returns at short

horizons.

5 Conclusion

In this paper we establish a new empirical fact: the aggregate investment rate is strongly
positively correlated with future stock market volatility. Together with the well-known
negative relationship between the investment rate and subsequent excess stock returns, this
implies that, conditionally on the aggregate investment rate, stock market exhibits a negative
mean-variance tradeoff. We interpret these empirical patterns using a general-equilibrium
production economy model. In our model, the qualitative empirical correlation patterns
among the aggregate investment and productivity on one hand, and the conditional moments
of the stock market returns on the other hand, arise because of time-varying discount rates.
Thus, our paper emphasizes the importance of time-varying discount rates for understanding
not only the behavior of financial markets, but also for interpreting the dynamics of the key
macroeconomic variables.

We are working on extending our model to incorporate the negative short-term correlation
between stock-return volatility and subsequent real investment. Together with the results
obtained in this paper, the extended model should further clarify the respective roles played
by the technology and preference shocks in shaping the observed joint dynamics of aggregate

investment and financial asset returns.
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6 Appendix: Solution and Numerical Procedure
6.1 Central’s Plannner’s Problem

The value function J(&, o, z, K) of the central planner’s problem satisfies the following HJB

equation:
emKa_gZ')\K 1=y 2
max 65[ 1:\7 } +ZKJK —5KJK—90'JU+(b—%)J§+ (21)
0—3( v? o? Ug(
(n— T)JQC + EJM + ?J& + 7Jm + pox vy + povdes + 00x Jpe = BJ.
We look for solutions of the form
J(g,O',J],K) - ﬁv(gv Z)7 (22)

where

z=x+ (a—1)k.

Substituting (22) back into (21) and using

6§+(1_’7)k
Je = Jgg=—"V,
¢ €€ 1~
eft(=7k
Kk = ﬁ[(l =NV +(a =1V,
es+(1=7)k
Jz = Jx§ = —‘/za
1=~
sz - —‘/227
|
ng - —‘/zcra
|
we obtain
(e* — % )T+ LV =0 (23)
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where Dynkin operator £ has the following form

9, o3 " 9,
L = (pv—@)a%—k u+aax—7—(1—a)(z — ) %+
2 52 2 92 52
+ 55+ oo Poxva = — [ =b— (1=7) (" = ).

The optimal investment rate, i*, satisfies

awﬁ*:[V—ijiw]F«—iwy]

6.2 Stock Price

The stock price is given by the discounted sum of dividends:

it C* Y
S, = e “E, /e‘B(S_tH& (—t> Dyds| = e 5 (CH a(l — ) J(&, 00, 24, Ky) —

C:
i *\ Y
N e e O I

t
C* Y
= K, (ﬁ) [aV (04, 2z0) — (1 — @)P(oy, )] ,
t
where the Feynman-Katz forumal implies that ®(oy, 2;) satisfies the following PDE
.*))\

(i)

>
—~
~

-+ LD =0,

>

(e

23

(25)

(26)

(27)



6.3 Steady state distribution

The joint steady state distribution of (o, 2), ps(z,0), satisfies the following Kolmogorov

backward equation

0i* OPoo(z, 0 o2 . Opoo(z, 0
_{‘9+(1_a)az}pm(2,0) = —90%4- ﬂ—%—(l—a)(z —5)] 652 23)
V2 Ppoo(2,0) 0% Ppoo(z,0) 0%pec (2, 0)
2 002 2 02 P ager

This equation is solved so that the probability density function integrates to one:

//poo(z,a)dzda =1

6.4 Numerical Procedure

We discretize the HJB equation on the (o, z) using the following approximations:

V(iz+A,,0)—=V(z,0)

v, = x ifo >0 (29)
V(- A

y, = Yz0) X(Z 29 i 5 <0 (30)
A _

y, = Yo A") V(9 i (- )0 >0 (31)

Vv, = Viz.0) _X(Z’J_AU), if (pv—0)o <0

Since (u+ (1 —a)d) >0, (0%/2+ (1 —a)i) > 0, we use the one-sided approximation for

the second derivatives:

Vi(z,o0+As)+V(z,0 —A,) —2V(z,0)
Az
V(iz+AL,0)+V(z—A,,0)—2V(z,0)
A2,

z

Voa =

‘/ZZZ
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For the cross-partials, we use

2V(z,o)+V(z+ A, o+ Ay)+V(z—A,0 — A,)

Vor = 2AA, B
[ VE+AL)+V(z—AL o)+ VI(z,0+A,) + V(20 = A) (32)
2AA, ’
if p > 0 and
B 2V(z,o)+V(z+ Ao —Ay) +V(z—AL,0+ A,)
VO’Z - |: QAZAO. + (33)
Viz+A,,0)+V(z—A,,0)+V(z,0+ A,) + V(z,0 — A,)
+ AN (34)

if p < 0. We define the transition probabilities between the discretized points to be:

) > (ot 8010 = s [0 - 0ol 2,02+ oz 2Wa n ]

ples) = (o= 8010 = s [0 = 0ya] .02+ Tz 2o n ]

p((z,0) = (z+A,,0)) = é {(M + (1= )b+ [o]" ox) A2A, + %Ag - "X;’ | AUAZ}
p(2,0) = (2=A,0) i) = é H% +(1=a)i+ o] ax} AZA. + %Ai _ %")‘AUAZ
Po) (b B+ B0 ) = p(e0) = (= B = )l = 5 [,
o) > (o= Bug = A ) =pl(50) (2 + B = A ) = g [ 5704

where

2
Q*((z,0),4) = |(pv — 0) 0| AGA? + |+ ox o] + %( + (1 —a) (¢ +5)} AZA, +

+0? A% + 0% A2 —oxv|p| ALA,

25

|



and

p = B-b-(1-7)@ —9)

The transition probabilities are positive if

A,
VA, >Ac,>v|’0| .

ol ox ox

Plugging in the approximations into the HJB equation and using the definitions above, we

get:

ST MCE O

V(Z,O') [14—?5 1—~ 05

S V(s)pl(z,0) > 5)

SES

where S is the set of nearest neighbors of (z,0). The discretized Bellman equation is:

{(et%(i*ml—v At

l—y 1+ pAt 1+BAtEt[V(Z’U)|(Z’J)]}

with
A2 A2

At

and
B=1B-b—(1-7) " -9
We solve the Bellman equation using policy iteration.

6.5 Steady state distribution

After solving the HJB equation, the steady state is given by the eigenvector of the transpose
of the transition probability matrix associated with the eigenvalue of 1, and then normalized

so that it integrates to unity.
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Table 1: Summary Statistics
This table reports the summary statistics of data and model output. I; is the real gross private domestic
investment (GPDI), Y; is the real gross domestic product (GDP), K, is the real capital stock, Ac¢; is the
real consumption growth, Ay, is the real GDP growth, Ai; is the GPDI growth, r; is the market return
(value-weighted CRSP index), r{ is the risk-free rate (3-month T-Bill yield), and vol, is the time series for
the natural log of the realized market volatility. Lowercase letters represent natural logarithms. The sample
is quarterly and spans the period from 1947 to 2009. Model is simulated 2,000 times using parameters

reported in Table 8 and the averages across simulations are reported.

Data Model
Eli; — ki) -2.5915 -2.6562
std[i; — ki 0.0961 0.0798
Ely; — k¢ -0.0277 -7.3794
std[y: — kq) 0.0677 0.0758
E[r] 0.0266 0.0184
std[r] 0.0806 0.0621
E[vol,] -2.7158 -2.9239
std[vol,] 0.4015 0.1736
E[r/] 0.0122 0.0061
std[r{] 0.0068 0.0078
Sharpe Ratio 0.1787 0.1981
E[Ac] 0.0083 0.0054
std[Acy] 0.0045 0.0053
E[Ay] 0.0086 0.0054
std[Ay] 0.0124 0.0150
E[Ad] 0.0088 0.0052
std[Ady] 0.0470 0.0398
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Table 8: Calibration Parameters

This table reports parameters used to calibrate the model.

Preferences:
Risk Aversion 5y 10
Intertemporal Discount Parameter 8 0.02
Preference Shock &;: Mean Reversion Rate 0 0.4
Preference Shock &;: Volatility v 0.3
Subjective Rate of Time Preferences: b, = B® + Blo? B° 0.10
BY 0.075
Technology:
Capital Elasticity a 033
Productivity Shock: Mean uw 0.015
Productivity Shock: Variance ox 0.03
Depreciation Rate é 0.05
Adjustment Costs Scale Parameter a 10
Adjustment Costs Elasticity to Investment Rate A 5
Correlation Between dW; and dW; p —-0.9
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Figure 2: Investment and consumption

as a function of the state variables ¢ and y — k
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Figure 3: Model’s impulse response function of the investment rate, profitability and con-
sumption after a preference shock
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Figure 4: Model’s impulse response function of the risk-free rate, expected stock returns and
volatility of stock returns after a preference shock
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