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Introduction

Credit Default Swaps (CDS) have been one of the most significant financial innova-

tions in the last 20 years. They have become very popular among both investment and

commercial banks, insurance companies, pension fund managers, and many other eco-

nomic agents. As a result, the market has experienced enormous growth. According

to the Bank of International Settlements (BIS), the notional amount of single-name

CDS contracts grew from $5.1 trillion in December 2004 to $33.4 trillion in June 2008,

and was still $18.4 trillion in June 2010 following a decline in the aftermath of the

credit crisis.

The recent crisis put CDS in the spotlight, with policymakers now assigning a

central role to CDS in many reforms. The success of these reforms depends on the

efficient functioning of the CDS market and on a thorough understanding of how it

operates. Recognizing this, a lot of research is dedicated to valuation of the contracts,

econometric analysis of CDS premia, studying violations of the law of one price in

the context of basis trades, impact of the search frictions, counterparty risk, private

information and moral hazard problems associated with holding both bonds and CDS

protection on the same entity.1

In this paper, we focus on another aspect of CDS. We study how the payoff

on a CDS contract is determined upon a credit event. Our theoretical analysis of

the unusual auction-based procedure reveals that this mechanism is vulnerable to

mispricing relative to the fundamental value. The mispricing is attributable, in large

part, to strategic bidding on the part of investors holding CDS. Empirically, we find

that CDS auctions underprice the underlying securities by 10%, on average. Because

this is an economically large magnitude, our findings may have implications for how

CDS are valued, used and analyzed.

In a nutshell, a CDS is a contract that protects a buyer against the loss of a bond’s

principal in the case of a credit event (e.g., default, liquidation, debt restructuring,

etc.). Initially, CDS were settled physically with the cheapest-to-deliver option. Un-

der such settlement, the protection buyer has to deliver any bond of the reference

1This work includes, but is not limited to, Acharya and Johnson (2007), Arora, Gandhi, and
Longstaff (2009), Bolton and Oehmke (2011), Duffie (1999), Duffie and Zhu (2011), Garleanu and
Pedersen (2011), Longstaff, Mithal, and Neis (2005), Pan and Singleton (2008), and Parlour and
Winton (2010).



entity to the protection seller in exchange for the bond’s par value. As a result of

the rapid development of the CDS market, the notional amount of outstanding CDS

contracts came to exceed the notional amount of deliverable bonds by many times.

This made physical settlement impractical and led the industry to develop a cash

settlement mechanism. This mechanism is the object of our study.

While a myriad of derivatives are settled in cash, the settlement of CDS in cash is

challenging for two reasons. First, the underlying bond market is opaque and illiquid,

which makes establishing the benchmark bond price for cash settlement difficult.

Second, the procedure for settlement of CDS provides market participants with an

option to replicate an outcome of the physical settlement in which both the CDS and

bond positions are closed simultaneously. Without this option, parties with positions

in both CDS and the underlying bonds may be subject to recovery basis risk.2

The industry has developed a novel two-stage auction in response to these chal-

lenges. At the first stage of the auction, parties that wish to replicate the outcome of

the physical settlement submit their requests for physical delivery via dealers. These

requests for physical delivery are aggregated into the net open interest (NOI). Deal-

ers also submit bid and offer prices with a commitment to transact in a predetermined

minimal amount at the quoted prices. These quotations are used to construct the

initial market midpoint price (IMM). The IMM is used to derive a limit on the

final auction price that is imposed to avoid a potential price manipulation. The

limit is referred to as the price cap. The NOI and the IMM are announced to all

participants.

At the second stage, a uniform divisible good auction is implemented, in which the

net open interest is cleared. Each participant can submit limit bids that are combined

with the obligatory bids of dealers from the first stage. The price of a bid that clears

the net open interest is declared to be the final auction price, which is then used to

settle the CDS contracts in cash.

We analyze the auction outcomes from both theoretical and empirical perspectives.

2Imagine a party that hedges a long position in a bond by buying a CDS with the same notional
amount. The final physically-settled position is known in advance: the protection buyer delivers
a bond in exchange for the predetermined cash payment equal to the par value. However, the
cash-settled position is uncertain before the auction: the protection buyer keeps the bond, pays
the uncertain auction-determined bond value to the protection seller, and receives par value in
exchange. The difference between the market value of the bond held by the protection buyer and
the auction-determined value is the risky recovery basis.

2



Our analysis has to incorporate two unique features of the auction. The first one is

the aforementioned two-stage process. The second one is that participants can have

prior positions in the derivative contracts written on the asset being auctioned.

To study price formation, we formalize the auction using an idealized setup in

which all auction participants are risk-neutral and have identical expected valuations

of the bond, v. This case is not only tractable, but also provides a useful benchmark

against which to test whether the auction leads to the fair-value price. In this case,

the auction is supposed to result in a final auction price equal to v. We show, however,

that the current auction design can result in the final price being either above or below

v and propose several ways to minimize such deviations.

First, we analyze the second stage. Consider the case of positive NOI, that is, a

second-stage auction in which the agents buy bonds. We show that agents with short

CDS positions can bid above the true value of the bond, because it increases their

payoff during settlement. This equilibrium behavior is more likely to occur when the

net open interest is small compared to the total short CDS positions of participating

agents. When this is the case, bidding above the fair value and realizing a loss from

buying NOI units of bonds can be compensated by a reduction in the net pay on the

existing CDS contracts. We also show that when the net open interest is large, there

can exist “mispricing” equilibria in which the auction results in a price below v.

Second, we show that the presence of the cap from the first stage can result in

either under- or overpricing in auction outcomes. A small absolute value of NOI

makes it easy for agents to manipulate the action price to benefit from their CDS

holdings. The cap restricts this behavior, which justifies including it in the auction

design. However, the cap can also make fair-price equilibria infeasible by giving

incentives to dealers to submit quotations below v in order to profit in the second

stage.

In our analysis of empirical data, we find support for our theoretical predictions.

We use TRACE bond data to construct the reference bond price. Using the reference

bond price from the day before the auction, we show that that when the net open

interest is to sell (which is a typical situation), the auction undervalues bonds by

10%, on average, and the degree of undervaluation increases with the NOI. We also

document a V-shaped pattern in underpricing: during eight days before the auction,

the extent to which bonds are underpriced declines from 35%, on average, to 10%,
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on average, while during 12 days after the auction, the extent to which they are

underpriced increases from 10%, on average to 35%, on average. Thus, we show that

our conclusions about the effect of the auction on price are robust to our choice of the

benchmark bond value. Finally, we find evidence that suggests that the price cap is

binding primarily because total short CDS positions of participating agents is much

larger than NOI.

Our results documenting underpricing during the auction prompt us to consider

ways in which it might be possible to improve the outcomes. In a standard setting, in

which agents have no prior positions in the derivative contracts written on the asset

being auctioned, Kremer and Nyborg (2004) suggest a likely source of underpricing

equilibria. They show that a simple change of the allocation rule from the pro-rata

on the margin to the pro-rata destroys all underpricing equilibria. We show that

the same change of the allocation rule would be beneficial in our setting as well. In

addition, we suggest that imposing an auction price cap conditional on the outcomes

of the first stage could further reduce mispricing in equilibrium outcomes.

To the best of our knowledge, there are three papers that examine CDS auctions.

Two of them simply analyse empirical data from CDS auctions. Helwege, Maurer,

Sarkar, and Wang (2009) evaluate an early sample of 10 auctions, of which only four

used the current auction format, and find no evidence of mispricing. Similarly to us,

Coudert and Gex (2010) document a large gap between a bond price on the auction

date and the final auction price by studying a larger sample of auctions and using

Bloomberg data for reference bond prices. However, they do not link the gap to the

net open interest, nor do they provide any theoretical explanations for their findings.

Finally, in an independent and contemporaneous study, Du and Zhu (2011) examine

what types of outcome are possible in CDS auctions. They restrict their attention

only to differentiable strategies, conclude that only “overpricing” equilibria can exist,

and suggest changing the current auction format to a double auction. Unlike them,

and similar to Wilson (1979) and Back and Zender (1993), we show that there can

be a substantial underpricing in uniform divisible good auctions when participating

agents have a small combined CDS position relative to the supply of bonds. We

also suggest a number of modifications that are designed to deal with both over- and

underpricing.

The remainder of the paper is organized as follows. Section 1 describes the CDS
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auction methodology that is currently used. Section 2 describes the auction model.

Section 3 provides the main theoretical analysis. Section 4 relates the predictions

of our theoretical model to empirical data from CDS auctions. Section 5 discusses

modifications that have the potential to improve the efficiency of the auction. Section

6 concludes. The appendix contains proofs that are are not provided in the main text.

1 The Auction Format

This discussion is based on a reading of the auction protocols, which are available from

the ISDA website. The Dura auction, conducted on Novemeber 28, 2006, was the first

auction that allowed single-name CDS to be settled in cash. All previous auctions

were designed for cash-settling credit indexes and used different rules. The auction

design used for Dura’s bankruptcy and all the subsequent credit events consists of

two stages.

In the first stage, participants in the auction submit their requests for physical

settlement. Each request for physical settlement is an order to buy or sell bonds at

par and must be, to the best of the relevant party’s knowledge, in the same direction

as, and not in excess of, its market position. This element of the design allows the

participants to replicate the traditional physical settlement of the contracts. For

example, if a party is long by one unit of protection (directionally equivalent to

selling a bond) and submits a request to sell one bond at par, the resulting cash flow

is identical to that of the physical settlement.

In addition, a designated group of agents (dealers) makes a two-way market in

the defaulted assets by submitting bids and offers with a predefined maximum spread

and a predefined quotation size that is associated with it. The spread and quotation

sizes are subject to specification prior to each auction and may vary for each auction

depending on the liquidity of the defaulted assets.3

The inputs of the first stage are used to calculate a net open interest (NOI)

and an ‘initial market midpoint’ (IMM), which are carried into the second part

of the auction. The NOI is computed as a difference of the buy and sell requests

for physical settlement. The IMM is set by discarding crossing/touching bids and

3The most common value of the spread is 2% of par. Quotation sizes range from $1 to $5 million;
$1 million is the most common amount.
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offers, and taking the ‘best half’ of the bids and offers and calculating the average.

The best half would be, respectively, the highest bids, and the lowest offers. A dealer

makes a payment (an adjustment amount) to ISDA if her quotation is crossed and is

on the wrong side of the IMM , that is, if a bid is higher than the IMM, and the

NOI is to sell or if an offer is lower than the IMM , and the NOI is to buy. The

adjustment amount is a product of the quotation amount and the difference between

the quotation and IMM.

As an example, consider the Nortel Limited auction that took place on February

10, 2009. Table 1 lists the market quotes that were submitted. Next, all the bids

are sorted in the descending offer and all the offers are sorted in the ascending offer.

Then, the highest bid is matched with the lowest offer; the second highest bid is

matched with the second lowest offer; and so on. Figure 1 displays the quotes from

Table 1 that are organized this way. For example, we that the Citibank bid of 10.5

and the Barclays offer of 6.0 create a tradeable market.

IMM is computed based on the non-tradebale quotes. In our example, there are

nine pairs of such quotes. First, the “best half”, i.e. the first five pairs, of the non-

tradebale quotes is selected. Second, IMM is computed as an average of both bid

and offer quotes in the best half, rounded to the nearest one-eighth of one percentage

point. In our example, the relevant bids are: three times 7.0 and two times 6.5; the

relevant offers are: two times 8.0, two times 8.5, and 9. The average is 7.6 and the

rounded average is 7.625.

Given the established IMM and the direction of open interest, the dealers whose

quotes resulted in tradeable markets pay an adjustment amount to ISDA. In the

case of Nortel, the open interest was to sell. Thus, the dealers whose bids crossed

the markets has to pay an amount equal to (Bid-IMM) times the quotation amount,

which was $2 MM in the Nortel case. Thus, Citigroup had to pay (10.5−7.625)/100×
$2MM = $57500 and Banc of America had to pay (9.5 − 7.625)/100 × $2MM =

$37500.

Finally, the direction of the open interest determines the cap on the final price

that is determined in the second part of the auction. Because the open interest is to

sell, the final price cannot exceed the IMM by 1.0. Thus, the cap price is 8.625 in

the Nortel case. It is depicted in Figure 1.

After the IMM , the NOI, and the adjustment amounts are published, the second
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stage of the auction begins. If the NOI is zero, the final price is set at the IMM.

If the NOI is non-zero, the dealers submit the corresponding limit orders on behalf

of their customers (even those without CDS positions) and for their own account to

offset the NOI (if the NOI > 0, agents submit ‘buy’ limit orders and vice versa). In

practice, it is unlikely that all agents who participate in the first stage, participate in

the second stage as well. The participants in the CDS market are diverse in terms of

their investment objectives and have various institutional constraints. For example,

many mutual and pension funds may not be allowed to hold any of the defaulted

bonds.

Upon submission of limit orders, the auction administrators match the open inter-

est against all market bids from the first stage of the auction and limit bids from the

second stage of the auction (if the NOI is to buy). They start with the highest bid

and proceed to the remaining highest bid until either the entire net open interest has

been matched, or all bids have been matched to the net open interest. In the former

case, the final price is equal to the lowest bid that corresponds to the last matched

limit order. However, if this lowest bid exceeds IMM by more than the cap amount

(typically half of the bid-offer spread), the final price is IMM plus the cap amount.

In the latter case, the final price will be zero and all bids will be filled on a pro rata

basis. If the NOI is to sell, the entire procedure is similar. If there are not enough

offers to match the entire net open interest to buy, the final price is set to par.

2 The Auction Model

The goal of this section is to formalize the auction process described in Section 1.

There are two dates: t = 0 and t = 1. There is a set N of strategic players. The total

number of agents is |N | = N. A set of dealers Nd constitutes a subset of all players,

Nd ⊆ N . Each agent i ∈ N is endowed with ni ∈ R units of CDS contracts and

bi ∈ R units of bonds. Agents with positive (negative) ni are called protection buyers

(sellers). Because a CDS is a derivative contract, it is in zero net supply,
∑

i ni = 0.

One unit of bond pays ṽ ∈ [0, 100] at time t = 1. The auction takes place at time

t = 0. It consists of two stages.
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2.1 First Stage

At this stage, an agent i can submit a request to sell yi (buy if yi < 0) units of bonds

at par (100). A protection buyer, ni > 0, is only allowed to submit a request to sell

yi ∈ [0, ni] units of bonds. A protection seller, ni < 0 can only submit a request

to buy yi ∈ [ni, 0] units of bonds. Given their requests, the NOI is determined as

follows:

NOI =
N∑
i=1

yi. (1)

In addition, after observing the NOI, all dealers from the subset Nd are asked to

quote a price πi. Given πi, a dealer i should be ready to sell and buy L units of bonds

at bid and offer prices πi + s and πi − s, s > 0. Given that L is small in practice,

we consider the case of L = 0 in the sequel.4 The first stage results in the auction

initial market midpoint (IMM). The quotations of agents whose bids and offers cross

are discarded. IMM is equal to the average of the remaining mid-quotations and

denoted by pM .

2.2 Second Stage

At this stage, there is a uniform divisible good auction. If NOI = 0 then pA = pM .

If NOI > 0, the auction is to buy NOI units of bonds. In this case, each agent i can

submit a left-continuous non-increasing demand schedule xi(p) : [0, pM +s]→ R+∪0.

Let N2, N2 ⊆ N denote a subset of all agents who participate at the second stage. Let

the total demand be X(p) =
∑

i∈N2
xi(p). The final auction price pA is the highest

price, at which all NOI can be sold:

pA = max{p|X(p) ≥ NOI}.

If X(0) ≤ NOI, pA = 0. Given pA, the allocations qi(p
A) are given according to the

pro-rata on the margin rule

qi(p
A) = x+

i (pA) +
xi(p

A)− x+
i (pA)

X(pA)−X+(pA)
, (2)

4The analysis of the case of nonzero L is available upon request.
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where x+
i (pA) = limp↓pA xi(p) and X+(p) = limp↓pA X(p) are the individual and total

demands above the auction clearing price.

If NOI < 0, the auction is to sell |NOI| units of bonds. Each agent i can then

submit a right-continuous non-decreasing supply schedule xi(p) : [100, pM − s] →
R− ∪ 0. Again, the set of all agents participating at the second stage is denoted by

N2, N2 ⊆ N . The total supply is X(p) =
∑

i∈N2
xi(p). The final auction price pA is

the lowest price, at which all NOI can be bought:

pA = min{p|X(p) ≤ NOI}.

If X(100) ≥ NOI, pA = 100. Given pA, the allocations qi(p
A) are given by

qi(p
A) = x−i (pA) +

xi(p
A)− x−i (pA)

X(pA)−X−(pA)
,

where x−i (pA) = limp↑pA xi(p) and X−(p) = limp↑pA X(p) are the individual and total

supplies below the auction clearing price.

2.3 Preferences

There are three groups of agents who participate in the auction. First, there are

agents who participate in the second stage. We consider a setup in which we assume

that these agents are risk-neutral and have identical expected valuations of the bond

payoff equal to v. The agents objective is to maximize their wealth at date 1. This

case is not only tractable, but also provides a useful benchmark against which to see

whether the auction leads to the fair-value price. In this case, the auction is supposed

to result in a final auction price equal to v.

Second, there are dealers who participate in both stages. We also assume that

they are risk-neutral, have identical expected valuations of the bond payoff equal to

v, and their objective is to maximize their wealth at date 1. Dealers are different

from the rest of auction participants in that they submit quotes, πi, in the first stage

that become public after the auction. Thus, because of reputation concerns, dealers

may be reluctant to quote prices very different from v unless this action results in a

large gain. A simple way to model this is to assume that dealers’ utility has an extra

term −γ(π − v)2, γ ≥ 0.
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Finally, there are agents who submit physical settlement requests, yi, in the first

stage (some of them, participate in the second stage as well). In practice, the choice

of yi is dictated by considerations outside of pure profit maximization associated with

CDS settlement. For example, some agents may want to try getting a hold of as many

bonds as possible to influence a company’s management is bankruptcy. In contrast,

other agents, such as pension funds or insurance companies, may not be allowed to

hold bonds of defaulted companies. As another example, the logic of “arbitrage”

trading strategies such as the CDS-bond basis trade necessitates physical settlement

as a way to offset a bond position exactly. Therefore, in our subsequent analysis

we do not model yi explicitly and take them as given. Modeling physical settlement

requests could be an interesting avenue for future research.

3 Analysis

We now provide the analysis of the auction described in the previous section. The

auction can be solved using backward induction. First, we solve for the equilibrium

outcome in the second stage of the auction for a given IMM and NOI. Second, we

find optimal dealer quotations πi in the first stage, given NOI and the equilibrium

outcomes of the second stage.

3.1 Second Stage

At this stage, there is a uniform divisible good auction, whose goal is to clear the

net open interest generated in the first stage. A novel feature of our analysis is that

we study auctions where participants have prior positions in the derivative contracts

written on the asset being auctioned. We show that equilibrium outcomes in this case

can be very different from those realized in “standard” auctions, that is, auctions in

which ni = 0 for all i.

We first consider the case in which all CDS positions are common knowledge.

Later, we relax this assumption. Each agent i maximizes her profit at time 1 given
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by

Πi = (v − pA)qi(p
A)

auction-allocated bonds
+ (ni − yi)× (100− pA)

remaining CDS

+ 100yi
physical settlement

+ v(bi − yi)
remaining bonds

. (3)

Therefore, because each agent i takes NOI, a set of physical requests yi, i ∈ N ,

and a demand of other agents x−i(p) as given, her demand schedule xi(p) solves the

following optimization problem:

max
xi(p)

(v − p(xi(p), x−i(p))) qi(xi(p), x−i(p)) + (ni−yi)× (100− p(xi(p), x−i(p))) . (4)

The first term of this expression represents the payoff realized from participating in

the auction, while the second term accounts for the payoff from the remaining CDS

positions, ni − yi, which are settled in cash on the basis of the auction results.

To develop intuition about the forthcoming theoretical results, consider bidding

incentives of the auction participants. The objective function (4) implies that, holding

payoff from the auction constant, an agent who has a short (long) remaining CDS

position is interested in the final price being as high (low) as possible. However,

agents with opposing CDS positions do not have the same capacity to affect the

auction price. The auction design restricts participants to submit one-sided limit

orders, depending on the sign of the NOI. If the NOI > 0, the allowed limit orders

are to buy, and, therefore, agents with short CDS positions are capable of bidding

the price up. In contrast, the most agents with long CDS positions can do to bid the

price down is not to bid at all. The situation is reversed when the NOI < 0.

Continuing with the case of the NOI > 0, consider an example of only one agent

with a short CDS position. It is clear that she would be interested in bidding the price

as high as possible if the NOI is smaller than the notional amount of her CDS. This

is because the cost of purchasing bonds at a high auction price is offset by the benefit

of cash-settling CDS at the same high price. In contrast, if the NOI is larger than the

notional amount of her CDS position, she would not bid the price above the fair bond

value v. This is because the cost of purchasing bonds at a price above v is not offset

by the benefit of cash-settling CDS. We show in the sequel that this intuition can
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be generalized to multiple agents as a long as we consider the size of their aggregate

CDS positions relative to the NOI. For this reason we introduce Property 1 below.

Property 1 When NOI > 0 ∑
i∈N2:ni<0

|ni − yi| ≥ NOI.

When NOI < 0 ∑
i∈N2:ni>0

ni − yi ≥ |NOI|.

When Property 1 holds, the aggregate cash-settled CDS position of agents is larger

than the absolute value of the NOI. We show next that this is the case when all agents

participate in the second stage.

Lemma 1 Suppose all agents participate in the second stage, N2 = N . Then Prop-

erty 1 holds.

Proof. We prove the case of NOI > 0. The case of NOI < 0 is similar.∑
i:ni<0

ni−yi+NOI =
∑
i:ni<0

ni−yi+
∑
i

yi =
∑
i:ni<0

ni+
∑
i:ni>0

yi ≤
∑
i:ni<0

ni+
∑
i:ni>0

ni = 0.

QED.

The next two propositions show that whether Property 1 holds or not is critical

for equilibrium outcomes. In particular, we demonstrate that when Property 1 holds

the equilibrium auction price, pA, is no less (no greater) than the bond payoff, v,

when NOI > 0 (NOI < 0). This result is in contrast to that realized in “standard”

auctions.5 If Property 1 does not hold, outcomes are similar to those of the “standard”

auctions.

Proposition 1 Suppose that Property 1 holds. If NOI > 0 and pM + s > v, then in

any equilibrium, the final auction price pA ∈ [v, pM + s]. Furthermore, there always

exists an equilibrium in which pA = pM + s. If maxi:ni<0 |ni − yi| ≤ NOI then there

also exists an equilibrium in which pA = v. If pM +s < v then pA = pM +s. Likewise,

5Contributions include, but are not limited to, Wilson, 1979; Back and Zender, 1993; Kremer
and Nyborg, 2004.
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if NOI < 0 and pM − s < v, then in any equilibrium, pA ∈ [pM − s, v]. Furthermore,

there always exists an equilibrium in which pA = pM−s. If maxi:ni>0(ni−yi) ≤ |NOI|
then there also exists an equilibrium in which pA = v. If pM−s > v then pA = pM−s.

Proof. See Appendix A.1.

We outline the intuition for the case of NOI > 0. If Property 1 holds, there is a

subset of agents for whom a joint loss from acquiring the |NOI| number of bonds at a

price above v is dominated by a joint gain from having to pay less on a larger number

of short CDS contracts that remain after the physical settlement. As a result, these

agents bid aggressively and can push the auction price above v unless it is constrained

by the IMM . In the latter case, pA = pM + s.

Proposition 2 Suppose Property 1 does not hold. If NOI > 0, only equilibria with

pA ≤ min{pM + s, v} exist. Moreover, there exist infinitely many combinations of

ni − yi such that any p ∈ [0,min{pM + s, v}] can be supported as a second-stage

equilibrium. Likewise, if NOI < 0, only equilibria with pA ≥ max{pM − s, v} exist.

Furthermore, there exist infinitely many combinations of ni − yi such that any p ∈
[max{pM − s, v}, 100] can be supported as a second-stage equilibrium.

Proof. See Appendix A.2.

The intuition for the proof is as follows. Suppose that NOI > 0 and pA > v

is an equilibrium. First, note that only agents who hold a short position on CDS

contracts are willing to bid above v. Because Property 1 does not hold, at least one

of these agents ends up acquiring more bonds than her remaining short CDS contracts

and therefore is better off reducing her demand for bonds. Therefore, just as in a

“standard” auction without CDS positions, only equilibria with pA ≤ v can exist. We

construct such equilibria explicitly in the Appendix.

3.2 First stage

The role of the first stage is to determine the NOI and the IMM , which serves as

a reference price. In our setting without uncertainty, the IMM does not carry any

information. Nevertheless, it can still play an important role, because it provides a

cap on the final price. We now show that the presence of the cap can result in either

lower or larger mispricing in auction outcomes.
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To be specific, we consider the case of NOI > 0. Proposition 1 shows that the final

price could be anywhere between v and 100 if there were no cap. The cap restricts

the final price to be no higher than pM + s. Therefore, in the presence of the cap,

the efficiency of the auction outcome depends on the bidding behavior of dealers in

the first stage. If the quotations of all dealers coincide with the actual value, πi = v,

pM = v. As a result, the final auction price does not deviate from v by more than s,

which justifies the presence of the cap in the auction design. However, as we show in

Lemma 2 below, the same presence of the cap gives incentives to dealers to submit

quotations below v in order to profit in the second stage.

We consider a simple case, in which dealers have no reputation concerns (γ = 0

in Section 2.3) and no dealer has any CDS exposure, that is, ni = 0 for all i ∈ Nd.6

Let pA(NOI) and q(NOI) denote the auction final price and dealers’ equilibrium

allocation of bonds as a function of NOI (we restrict our attention to equilibria in

which dealers play symmetric strategies). In the first stage, a dealer i then solves

max
πi

(
v − pA(pM(πi), NOI)

)
× q(pM(πi), NOI). (5)

Lemma 2 If NOI > 0, πi = 0, i ∈ Nd is a first-stage equilibrium. Similarly, if

NOI < 0, πi = 100, i ∈ Nd is a first-stage equilibrium.

Proof. As usual, we consider the case of NOI > 0. Because 0 is the lowest possible

quotation, if a dealer deviates from it the only result can be a higher second-stage

price, which will result in a lower profit for the dealer unless it leads to a larger bond

allocation q(pM(πi), NOI). The later, however, is independent from the dealer’s quote

because the final price is capped. Thus, no dealer will want to deviate. QED

Lemma 2 implies that the cap can lead to auction outcomes in which the final

price is far from the true value. In general, the larger is the NOI, the larger is the

profit that dealers get from playing this equilibrium strategy.

6This case is a simplification but is arguably realistic as dealers try to maintain zero CDS positions
in their market-making capacity. The analysis of the case of nonzero dealers’ CDS positions and
γ 6= 0 is available upon request.

14



3.3 Private CDS positions

So far, we have restricted our attention to the simplest case in which agents’ CDS

positions are common knowledge. We now discuss how our results change if we re-

lax this assumption. In practice, agents have private information about their CDS

positions. To model this situation, we consider a variation of our base model. Specif-

ically, in this section, we assume that CDS positions ni are observed privately and

are drawn from a joint distribution F : Ω → RN that is common knowledge across

agents. Each agent i knows only her own CDS position ni. The next two propositions

show that the results of Propositions 1 and 2 still generally hold. We consider the

case of NOI > 0.

Proposition 3 Suppose that F is such that NOI, ni, and yi satisfy Property 1 with

probability 1. If pM + s ≥ v, in any equilibrium pA ≥ v.

Proof. See Appendix A.3.

The intuition is similar to that in Proposition 1. If NOI > 0 and Property 1

holds almost surely, then for any realization of {ni}, i ∈ N , a subset of agents who

hold a large number of short CDS contracts know that they receive sufficient support

in pushing the price above v. As a result, they submit aggressive bidding schedules

and the final price is above v in any state of the world.

Proposition 4 Suppose that F is such that NOI, ni, and yi violates Property 1 with

probability 1. In addition, suppose that there exists ν > 0 such that ni − yi > ν

whenever ni − yi > 0.7 Then there exists an equilibrium in which pA < v with

probability 1.

Proof. See Appendix A.4.

Proposition 4 shows that when CDS positions, ni, are private information, there

exist a broad set of conditions that lead to underpricing (overpricing if NOI < 0) in

any state of the world.

7This is a technical condition that allows us to obtain explicit closed-form solutions for equilibrium
strategies. It ensures that the number of agents who submit non-zero demand schedules is constant
across different realizations of uncertainty.

15



4 Empirical Evidence

We now describe our dataset and present the empirical analysis. First, we determine

how the outcomes of the first stage affect the final outcomes. Next, we evaluate how

the second stage of the auction affects the final price.

4.1 Data

Our data come from two primary sources. The details of the auction settlement

are publicly available from the Creditfixings website (www.creditfixings.com). As

of December 2010, there have been 86 CDS and Loan CDS auctions, which settle

contracts on both US and international legal entities. To study the relationship

between auction outcomes and bond values, we merge these data with the bond price

data from the TRACE database. TRACE reports corporate bond trades for US

companies only.Thus, our merged dataset contains 23 auctions.

Table 2 summarizes the results of the auctions for these firms. It reports a settle-

ment date, a type of credit event, and auction outcomes. Most of the auctions took

place in 2009 and were triggered by the Chapter 11 event. Of the 23 auctions, only

two (Six Flags and General Motors) have the net open interest to but (NOI < 0).

The full universe of CDS auctions contains 61 auctions that have the net open interest

to sell, 19 auctions that have the net open interest to buy, and 6 auctions that have

zero net open interest.

Table 3 provides summary statistics of deliverable bonds for each auction for

which we have the bond data. Deliverable bonds are reported in auction protocols,

which are available from the Creditfixings website. The notional amount of deliver-

able bonds outstanding exceeds $10B for four companies (Lehman Brothers, Charter

Communications, General Motors, and CIT Group). The table also reports the ratio

of the net open interest to the notional amount of deliverable bonds (NOI/NAO).

It shows how many bonds change hands during the auction as a percentage of the

total amount of bonds. There is strong heterogeneity in NOI/NAO across different

auctions. The absolute value ranges from 0.38% to 56.81%. In practice, NOI never

exceeds NAO.

Following Bessembinder, Kahle, Maxwell, and Xuet (2009), we construct daily

bond prices by weighing the price corresponding to each trade against the trade
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size reported in TRACE. Bessembinder, Kahle, Maxwell, and Xuet (2009) advocate

eliminating all trades under $100,000 because they are likely to be noninstitutional.

The larger trades have lower execution costs; hence, they should reflect the underlying

bond value with greater precision. For each company, we build a time-series of bond

prices in the auction event window of -30 to +30 trading days. Because all credit

events occurred within a calendar month of the CDS auction, our choice of the event

window ensures that our sample contains all the data for the post-credit-event prices.

The last column of Table 3, reports a weighted average bond price on the day before

the auction.

One of the most important tests of the current auction format is whether the

settlement price pA equals the bond value v. Unfortunately, the true bond value is

not observed. In light of this, we conduct our empirical analysis assuming that the

weighted-average market price of bonds a day before an auction, p−1, is a good proxy

for the bond value v. Admittedly, this measure is not a perfect substitute for the

true value of the bond, because many bond names are not very liquid. In addition,

expectations as to the outcomes of CDS auctions may affect bond prices. Because of

these reservations, we check whether our conclusions are robust to this assumption

in a subsequent section.

4.2 The Impact of the First Stage

The theoretical results of section 3 imply that the first and the second stages of the

auction are not independent. The first stage yields the mid-point price, pM , which

determines a cap on the final settlement price. Our model shows that when the final

price, pA, is capped, it can be both above and below the true value of the bond, v.

We focus on the case of NOI > 0. The first case can be realized only if the

aggregate net CDS position of the agents who participate in the second stage is

larger than the net open interest (Propositions 1 and 2). The second case is realized

when the dealers set pM so that pM + s is below v. Doing so prevents the agents from

competing in prices above the cap at the second stage.

Our model suggests a way of differentiating between the two cases when the price

cap is reached. In the first case, only agents who sold protection have an incentive

to bid above the true value of the bond to minimize the amount paid to a CDS
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counterparty. Simultaneously, they would like to minimize the amount of bonds

acquired at the auction if the price is above v, for a given final auction price. Thus,

they would never bid more thanNOI at prices above v. In the second case, submitting

a large demand at a cap price leads to a greater profit. Thus, in the presence of

competition and sharing rules, agents have an incentive to bid substantially above

NOI.

Of the 86 credit-event auctions, the final price is capped in 19.8 Figure 2 shows

the companies and the individual bids at the cap price . The bids are represented

by different colors. The bid sizes are scaled by NOI to streamline the interpretation.

For example, in total, there are seven bids at the cap price in the case of General

Growth Properties. Six of them are equal to NOI and the seventh one is one-fourth

of NOI.

We can see that in all but two auctions (Kaupthing Bank and Glitnir), the bids

at the price cap do not exceed NOI. These results suggest that the cap is reached

primarily because of the large effect of the CDS position. In this case, our model

predicts that the final auction price will be above the true bond value. Of the 19

auctions, we have bond data for only five companies: Smurfit-Stone, Rouse, Charter

Communications, Capmark, Bowater. Comparing the final action price from Table 2

with the bond price from Table 3 we can see that that, as anticipated, the bond price

is below the final auction price in these cases.

We can compare the bond and auction prices for the rest of the companies with

available TRACE data. Figure 3 shows the ratio of bond and final auction prices,

p−1/p
A. We see that in all but seven auctions the final auction price, pA, is below

the bond price, p−1. The exceptions include the aforementioned five companies with

capped auction prices. The remaining two exceptions, General Motors and Six Flags,

did not reach the cap, but they have negative NOI, so their auction price is expected

to have a reverse pattern.

4.3 Price Impact at the Second Stage

In the preceding section, we showed that when the price cap is not reached, the

auction yields a price that is below the bond value. According to Propositions 1 and

8Of these 19 auctions, only one (Ecuador) has a negative NOI. So the above discussion for the
case of positive NOI should be adjusted appropriately for Ecuador.
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2, this can occur only if Property 1 does not hold. Recall that Property 1 relates the

net open interest to the aggregate CDS positions of those agents who participate in

the second stage of the auction. We do not have data on the latter. In consequence,

we cannot test Propositions 1 and 2 directly.

Instead of testing these propositions, we provide empirical evidence that comple-

ments our theoretical analysis. Specifically, we study the effect of the NOI on the

degree of price discrepancy that results from the auction. We scale the net open

interest by the notional amount of deliverable bonds, NOI/NAO, to allow for a

meaningful cross-sectional examination.

Table 3 and Figure 3 reveal that NOI/NAO has the largest values in the auctions

where the largest discrepancy in prices occurs. At the same time, NOI/NAO has the

lowest values in the auctions where the final price is capped, which is again consistent

with Propositions 1. We quantify this relationship using a simple cross-sectional

regression of p−1/p
A on NOI/NAO :

p−1/pA = α + β ×NOI/NAO + ε. (6)

Figure 4 shows the results. The normalised NOI explains 65% of the variation

in the ratio of the lag of the market price of bonds to the final price. The beta

is significantly positive, which is consistent with our prediction that larger NOI

increases the likelihood of equilibria in which mispricing occurs.

Our conclusions so far rest on the assumption that p−1 is a good proxy for the

actual value v. One may argue that auctions exist precisely because it is difficult to

establish a bond’s fair value by observing the bond markets. Moreover, even if our

representative bond price were to reflect the bond value accurately, it would be for

the day before the auction. It is conceivable that the auction process establishes the

correct value v that differs from p−1 simply because of the arrival of new information

and/or the centralised clearing mechanism of the auction.

We expand the auction event window to check robustness of our results to these

caveats. The shortest time between a credit event and an auction is 8 days in our

sample. This prompts us to select an event window of -8 to +12 days. The choice

of the right boundary is dictated by considerations of liquidity: liquidity generally

declines after the auction. Figure 5 displays daily bond prices normalised by the
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auction settlement price, equally weighted across all the 23 auctions for which we

have the bond data. We see that the price generally declines, reaches its minimum on

the auction day, then reverts back to its initial level. The figure shows that no matter

which day we look at, the auction settlement price is, on average, at least 10% lower.

In fact, p−1 turns out to be the most conservative proxy for v as the discrepancy

between the bond and auction prices increases by up to 35% in both time directions.

The observed V shape of the discrepancy alleviates the concern that the correct

value v differs from p−1 simply because the latter does not reflect the bond value

correctly. If it were the case, one would expect bond prices to hover around the

auction price after the auction. In practice, bond prices increase substantially after

the auction.

5 Discussion

The empirical section documents that when NOI/NAO is large, the auction generally

results in a price that is considerably below the bond value. We now discuss the likely

cause of this price discrepancy and suggest several modifications to the auction design

that can reduce mispricing in auction outcomes.

5.1 Allocation rule at the second stage

Proposition 2 shows that when Property 1 does not hold, the CDS auction is similar

to a “standard” auction, so the price may be below v. Kremer and Nyborg (2004)

show that in a setting without CDS positions, a simple change of the allocation rule

from pro rata on the margin rule (2) to the pro-rata rule destroys all underpricing

equilibria so that only pA = v remains. Under the pro-rata rule, the equilibrium

allocations qi are given by

qi(p
A) =

xi(p
A)

X(pA)
.

The next proposition extends the result of Kremer and Nyborg (2004) to our setting.

We demonstrate that if the conditions of Proposition 2 are satisfied and pM + s ≥ v,

the only second-stage equilibrium price pA under the pro-rata rule is equal to v. This

is true even if the agents are allowed to hold non-zero quantities of CDS contracts.
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Proposition 5 Suppose that the conditions of Proposition 2 are satisfied and the

auction sharing rule is pro-rata. Then, if NOI > 0, all second-stage equilibria result

in the unique final price pA = min{pM +s, v}. If NOI < 0, all second-stage equilibria

result in the unique final price pA = max{pM − s, v}.

Proof. See Appendix A.5.

Consider the case of the positive NOI to develop intuition for this result. Accord-

ing to Proposition 2, if Property 1 does not hold then the pro-rata on the margin

allocation rule may inhibit competition and lead to underpricing equilibria. The pres-

ence of agents who are short CDS contracts does not help in this case. The pro-rata

allocation rule (i) does not guarantee the agents their inframarginal demand above

the clearing price and (ii) closely ties the proportion of allocated bonds to the ratio

of individual to total demand at the clearing price. Therefore, a switch to such a rule

increases competition for bonds among agents. As a result, even agents with long

positions bid aggressively. If pA < v then demanding the NOI at a price only slightly

higher than pA allows an agent to capture at least half of the surplus. As a result,

only fair-price equilibria survive.

5.2 The price cap

Our theoretical analysis in Section 3.2 shows that the presence of the cap can result

in either lower or larger mispricing in auction outcomes. The cap is likely to help

when |NOI| is small and the temptation to manipulate the auction results is highest.

At the same time, the cap allows dealers to limit competition in the second stage if

they set the IMM away from the true bond price.

These results suggest that making the cap conditional on the outcome of the

first stage of a CDS auction can lead to a better auction design. In our base model

without uncertainty, the optimal conditional cap is trivial. Again, we consider the

case of NOI > 0. If pM < v, setting s∗ = v− pM ensures that the set of second-stage

equilibria includes v. If pM ≥ v, it is best to set s∗ = 0.

In practice, v and ni are unobservable. In this case, we suggest making the cap

conditional on NOI and on the ratio pM/p−1. For example, if pM/p−1 ≤ α and the

NOI is large, where α < 1 is reasonably small, the auctioneer can set a larger cap; if

pM/p−1 > α and the NOI is small, a smaller cap can be set.
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5.3 Risk-averse agents

So far, we have restricted our attention to the setting with risk-neutral agents. This

allowed us to abstract from risk considerations. If agents are risk-averse, the reference

entity’s risk is generally priced. Even though a CDS is in a zero net supply, its

settlement leads to a reallocation of risk among the participants in the auction; hence,

it can lead to a different equilibrium bond price. In a particular scenario, when

NOI/NOA is large and positive and there are only a few risk-averse agents willing to

hold defaulted bonds, the auction results in a highly-concentrated ownership of the

company’s risk; hence, it can lead to a lower new equilibrium bond price.

Due to the fact that we do not have data on individual agents’ bids and positions,

we cannot determine whether the observed price discrepancy is due to the mispricing

equilibria played or the risk-aversion channel. It is likely that both factors work

together in the same direction. Data on individual agents’ bids and positions could

help to quantify the effect of the two factors on the observed relationship between the

auction price and the size of the net open interest.

6 Conclusion

We have presented a theoretical and empirical analysis of how CDS contracts are

settled when a credit event takes place. A two-stage auction-based procedure aims to

establish a reference bond price for cash settlement and to provide market participants

with an option to replicate an outcome of a physical settlement. The first stage

determines the net open interest (NOI) in the physical settlement and the auction

price cap (minimum or maximum price depending on whether the NOI is to sell or to

buy). The second stage is a uniform divisible good auction with a marginal pro-rata

allocation rule that establishes the final price by clearing the NOI.

In our theoretical analysis, we show that the auction may not result in the fair

bond price. Whether the auction underprices or overprices the bond depends on

the relative size of the NOI and the aggregate CDS positions of the agents who

participate in the second stage of the auction.

In our analysis of empirical data, we find support for our theoretical predictions.

The bonds are underpriced by 10%, on average, and the amount of underpricing
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is related to the NOI. We propose introducing a pro-rata allocation rule and a

conditional price cap to insure against both underpricing and overpricing equilibria

in different auction settings.
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A Appendix

A.1 Proof of Proposition 1

We prove the case of the NOI > 0. The case of the NOI < 0 is similar. Suppose that

pM + s > v and pA < v. We show that this cannot be true in equilibrium. Let the

equilibrium allocation of bonds for agent i be qi. Consider a variation of a demand

schedule of player i from xi to x′i that leads to an auction price p ∈ [pA, v]. Denote

the new bond allocation of agent i by q′i. Since demand schedules are non-decreasing,

q′i ≥ qi. Agent i′s change in profit is thus

δi =
[
(v − pA)qi − pA(ni − yi)

]
− [(v − p)q′i − p(ni − yi)] =

= (p− pA)(ni − yi + qi)− (v − p)(q′i − qi) ≤ (p− pA)(ni − yi + qi). (A1)

Equilibrium conditions require that δi ≥ 0 for all i. Summing over all i such that

ni < 0, we have that it must be that

0 ≤
∑
i:ni<0

δi ≤ (v − pA)
∑
i:ni<0

(ni − yi + qi) .

Because all qi ≥ 0,∑
i:ni<0

(ni − yi + qi) ≤
∑
i:ni<0

(ni − yi) +NOI ≤ 0, (A2)

where we use Property 1. Thus in any equilibrium with pA < v, it must be that δi = 0

for all i with ni < 0. (A1) and (A2) then imply that for any deviation x′i that leads to

p ∈ [pA, v] it must be that q′i = qi. Since this is true for any p ∈ [pA, v] it implies that

the initial total demand X(p) is constant over [pA, v], and therefore pA = v. Thus we

arrive at a contradiction.

Next, consider the following set of equilibrium strategies:

xi(p) :

{
xi = NOI × (ni − yi)/(

∑
i:ni<0(ni − yi)) if v < p ≤ pM + s,

xi = NOI if p ≤ v.
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for agents with net negative CDS positions after physical request submission, and

xi(p) ≡ 0 for agents with positive CDS positions. It is not difficult to see that it

supports pA = pM + s.

Consider now the following set of equilibrium strategies:

xi(p) :

{
xi = 0 if v < p ≤ pM + s,

xi = NOI if p ≤ v.

for agents with net negative CDS positions after physical request submission, and

xi(p) ≡ 0 for agents with positive CDS positions. It is not difficult to see that it

supports pA = v, provided that maxi:ni<0 |ni − yi| ≤ NOI. QED.

A.2 Proof of Proposition 2

We focus on the case of the NOI > 0. First, we prove that pA ≤ v. Suppose that

it is not true and there exists an equilibrium with pA > v. In such an equilibrium,

since Property 1 does not hold, there exists i such that agent i′s equilibrium second

stage allocation qi > |ni−yi|. Consider a variation of this agent i′s demand schedule,

in which she submits zero demand at pA > v and the NOI at pA = v. Given this

variation, the new auction price is higher than or equal to v. Thus, her profit increases

at least by (pA−v)(qi+ni−yi) > 0. Thus pA > v cannot be an equilibrium outcome.

Next, we prove that equilibrium outcomes with pA strictly lower that v can realize

even if pM + s ≥ v. The proof is by construction. We construct an equilibrium in

continuous strategies. Similar to Kremer and Nyborg (2004), one can show that any

equilibrium which is obtained when restricting players to continuous strategies is still

an equilibrium. In an equilibrium, the sum of the demand of agent i, xi(p
A) and

the residual demand of other players, x−i(p
A) has to equal to the NOI. Therefore,

F.O.C. for agent i at equilibrium price pA is

(v − pA)
∂x−i(p

A)

∂p
+ xi(p

A) + ni − yi = 0 if xi(p
A) > 0,

(v − pA)
∂x−i(p

A)

∂p
+ xi(p

A) + ni − yi ≥ 0 if xi(p
A) = 0. (A3)
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Consider the following set of strategies:9

xi = [c(v − p)γ − ni + yi]+ (A4)

Suppose one wants to support pA = 0. For pA = 0 to be an equilibrium it must be

that, in addition to optimality conditions (A3), the total demand at p = 0 equals to

NOI: ∑
i∈N∈

[cvγ − ni + yi]+ = NOI. (A5)

Equation (A5) defines c for any γ, which we denote as c(γ). Suppose that the set of

ni − yi is such that there exists a solution to the following equation:

γ−1 =
∑
i∈N∈

1{c(γ)vγ−ni+yi≥0} − 1. (A6)

Let us find conditions for the existence. For convenience, let us assume w.l.o.g. that

all ni − yi are sorted in the increasing order. Consider γ = 1/(N2 − 1), N2 = |N2|. If

for all i, c(γ)vγ − ni + yi ≥ 0 then γ is the sought solution. If there exists i such that

c(γ)vγ − ni + yi < 0 then discard the most positive ni − yi, consider γ = 1/(N2 − 2),

and repeat the whole process until we get such γ that all c(γ)vγ − ni + yi ≥ 0. Let

M be the corresponding number of agents who survived the elimination procedure,

so that γ = 1/(M − 1). Suppose that(
NOI +

M∑
i=1

(ni − yi)

)
/M − (ni − yi) ≥ 0, i = 1..M, (A7)(

NOI +
M∑
i=1

(ni − yi)

)
/(M − 1)− (nM+1 − yM+1) < 0. (A8)

Condition (A7) ensures that xi(0) > 0, for i = 1..M . Condition (A8) ensures that

(A3) holds, so that M + 1 agent does not want to submit a positive demand at zero

price. Substituting demand schedules (A4) with such a γ into F.O.C. (A3) one can

see that they support pA = 0 as the equilibrium price. Also, it can be shown that if

pA = 0 can be supported as an equilibrium then any other price pA ∈ [0, v] can be

9A similar result can be shown using other strategies, e.g., linear strategies.
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supported as well. QED.

A.3 Proof of Proposition 3

As usual, we provide a proof for the case of the NOI > 0. Suppose that there exists

a set of equilibrium strategies, which lead to pA < v on a set of positive measure.

Denote this set by S. We show that this cannot be true. Let the equilibrium allocation

of bonds for agent i be qi, which now depends on the realization of a state ω ∈ Ω.

Consider a variation of a demand schedule of player i in which it demands a higher

amount of bonds x′i for p ≤ v. This variation leads to an auction price p ∈ [pA, v] and

a new bond allocation q′i ≥ qi whenever pA ∈ S and to the same equilibrium price

and bond allocation whenever pA ∈ Ω/S. Agent i′s expected change in profit from

this variation is

δi =

∫
Ω

([
(v − pA)qi − pA(ni − yi)

]
− [(v − p)q′i − p(ni − yi)]

)
dF (ni, ·) (A9)

≤ (ni − yi + qi)

∫
Ω/S

(p− pA)dF (ni, ·) ≤ (ni − yi + qi)

∫
Ω/S

(v − pA)dF (ni, ·).

Equilibrium conditions require that δi ≥ 0 for all i. Summing over all i with ni < 0,

we have that it must be that

max
i

{∫
Ω/S

(v − pA)dF (ni, ·)
} ∑
i:ni<0

(ni − yi + qi) ≥
∑
i:ni<0

δi ≥ 0. (A10)

Since all qi ≥ 0∑
i:ni<0

(ni − yi + qi) ≤
∑
i:ni<0

(ni − yi)+NOI =
∑
i:ni<0

ni+
∑
i:ni>0

yi ≤
∑
i:n̂i<0

ni+
∑
i:ni>0

ni = 0.

Thus it must be that δi = 0 for all i with ni < 0. As in Proposition 1, this implies
that for any deviation x′i that leads to p ∈ [pA, v], q′i = qi. Since this is true for any
p ∈ [pA, v] it implies that the initial total demand X(p) is constant over [pA, v] for
ω ∈ S, and therefore pA = v ω ∈ S. Thus we arrive at a contradiction. QED.
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A.4 Proof of Proposition 4

The proof is by construction. We consider the case when F is such that there are
M ≥ 2 agents with negative CDS positions who participate in the second stage. Cases
with M = 1 and M = 0 are simpler and available upon request. As in Proposition 2,
we construct equilibria in continuous strategies and consider the case when pM+s ≥ v.
To simplify notation, define n̂i = ni − yi. Following Wilson (1979), define a function
H(p, xi(p)) as

H(p, xi(p)) = Prob{pA ≤ p} = Prob{x−i(p, n̂−i) ≤ NOI − xi(p)}. (11)

Then agent i′s expected profit as a function of its demand xi(p) can be written as∫ 100

0

[(v − p)xi(p)− n̂ip] dH(p, xi(p)). (12)

Integrating (13) by parts we arrive at∫ 100

0

[
−(v − p)x′i(p) + n̂i + xi(p)

]
H(p, xi(p))dp+(v−100)xi(100)−100n̂i−vxi(0)H(0, xi(0)).

(13)

Euler equation takes form of

d

dp
[(v − p)H(p, xi(p))] +H(p, xi(p)) + [−(v − p)x′i(p) + n̂i + xi(p)]H

′
x(p, xi(p)) = 0,

which simplifies to

(v − p)H ′p(p, xi(p)) + [n̂i + xi(p)]H
′
x(p, xi(p)) = 0, ∀p ∈ [0, 100]. (14)

Since each agent can submit only non-negative demand schedule, optimality condition
(14) is in fact,

(v − p)H ′p(p, xi(p)) + [n̂i + xi(p)]H
′
x(p, xi(p)) = 0, ∀p : xi(p) > 0,

(v − p)H ′p(p, xi(p)) + [n̂i + xi(p)]H
′
x(p, xi(p)) ≤ 0, ∀p : xi(p) = 0. (15)

Suppose that each agent i with n̂i < 0 submits a demand schedule

xi(p) = c(v − p)1/(M−1) − n̂i, (16)

and agents with positive CDS positions submit zero demand. Consider first optimality
conditions (15) for agents with negative CDS positions. From the the definition of
H(p, xi(p)), for such an agent i,

H ′p(p, xi(p)) = −c(v − p)1/(M−1)−1H ′x(p, xi(p)).
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Therefore, optimality conditions (15) become[
−c(v − p)1/(M−1) + n̂i + xi(p)

]
H ′x(p, xi(p)) = 0, (17)

which, given (16), holds true for every p. Consider now optimality conditions (15) for
agents with positive CDS positions. From the the definition of H(p, xi(p)), for such
an agent i,

H ′p(p, xi(p)) = −c(v − p)1/(M−1)−1 M

M − 1
H ′x(p, xi(p)).

Therefore, optimality conditions (15) become

−c(v − p)1/(M−1) M

M − 1
+ n̂i ≥ 0, ∀p : H ′x(p, 0) < 0, (18)

where we used the fact that H ′x(p, 0) ≤ 0. Consider

c =
c′NOI

Mv1/(M−1)
. (19)

In equilibrium,

X(p) = NOI ⇔ pA = v

(
1−

NOI +
∑

i∈N2:ni<0 n̂i

c′NOI

)
. (20)

Since Property 1 does not hold, v(1− 1/c′) ≤ pA < v with probability one. Finally, it
is always possible to choose c (and therefore c′) such that optimality conditions (18)
for agents with positive CDS positions hold true. QED.

A.5 Proof of Proposition 5

As usual, we focus on the case of the NOI > 0. Note that the pro-rata sharing rule
satisfies the majority property (Kremer, Nyborg (2004)): an agent whose demand at
the clearing price is above 50% of the total demand at this price is guaranteed to get
at least (50% + η)×NOI, where η > 0.
First, suppose that v ≤ pM + s. The proof that pA cannot be above v is the same as
in Proposition 2. We prove that pA cannot be below v. Suppose pA < v. The part of
each agent i’s utility that depends on its equilibrium allocation and the final price is:

(v − pA)× qi − pA × n̂i.

Suppose first that there is at least one agent for which qi < 0.5. Suppose this agent
changes its demand schedule to:

x′i(p) =

{
NOI, p ≤ pA + ε

0, otherwise,
(21)
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where 0 < ε < v − pA. Under such a deviation, the new clearing price is pA + ε.
Because X−i(p

A + ε) < NOI (otherwise, pA + ε would have been the clearing price),
agent i demands more than 50% at pA + ε and under the pro-rata sharing rule gets
q′i > 0.5. The lower bound on agent i’s relevant part of utility is now:

(v − pA − ε)× 0.5− (pA + ε)× n̂i.

We can write the difference between agent i’s utility under deviation and under the
assumed equilibrium:

(0.5− qi)× (v − pA)− ε(n̂i + 0.5). (22)

For ε small enough, and under assumption that pA < v, (22) is greater than zero,
hence equilibria with pA < v cannot exist.
If there are no agents with qi < 0.5, we are in an auction with two bidders only, and
each of them gets exactly 0.5×NOI. At a price pA + ε, 0 < ε < pM + s− v, there is
at least one player (player i), for which xi(p

A + ε) < 0.5. Then, if the opposite agent
uses (21), the new clearing price is pA+ε and this agent gets at least (0.5+η)×NOI.
For ε small enough, the difference between agent i’s utility under deviation and under
the assumed equilibrium is:

η × (v − pA)− ε(n̂i + 0.5 + η) > 0. (23)

Therefore, equilibria with pA < v cannot exist. We conclude that if v ≤ pM + s, then
pA = v is the only clearing price in any equilibrium under the pro-rata sharing rule.
Finally, suppose that pM + s < v. The proof for this case is the same, except there is
no feasible deviation to a higher price if pA = pM + s. Hence, pA = pM + s < v is the
only clearing price in any equilibrium under the pro-rata sharing rule. QED.
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Table 1
Nortel Limited market quotes

Dealer Bid Offer

Banc of America Securities LLC 9.5 11.5
Barclays Bank PLC 4.0 6.0
BNP Paribas 7.0 9.0
Citigroup Global Markets Inc. 10.5 12.5
Credit Suisse International 6.5 8.5
Deutsche Bank AG 6.0 8.0
Goldman Sachs & Co. 6.0 8.0
J.P. Morgan Securities Inc. 7.0 9.0
Morgan Stanley & Co. Incorporated 5.0 7.0
The Royal Bank of Scotland PLC 6.5 8.5
UBS Securities LLC 7.0 9.0

Table 1 shows two-way quotes submitted by dealers at the first stage of Nortel Ltd.
auction.
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Table 2
Auction Summaries

Name Date Credit Event Inside Market Net Open Final
Quote Interest Price

Dura 28 Nov 2006 Chapter 11 24.875 20.000 24.125
Dura Subordinated 28 Nov 2006 Chapter 11 4.250 77.000 3.500
Quebecor 19 Feb 2008 Chapter 11 42.125 66.000 41.250
Lehman Brothers 10 Oct 2008 Chapter 11 9.750 4920.000 8.625
Washington Mutual 23 Oct 2008 Chapter 11 63.625 988.000 57.000
Tribune 6 Jan 2009 Chapter 11 3.500 765.000 1.500
Lyondell 3 Feb 2009 Chapter 11 23.250 143.238 15.500
Nortel Corp. 10 Feb 2009 Chapter 11 12.125 290.470 12.000
Smurfit-Stone 19 Feb 2009 Chapter 11 7.875 128.675 8.875
Chemtura 14 Apr 2009 Chapter 11 20.875 98.738 15.000
Great Lakes 14 Apr 2009 Ch 11 of Chemtura 22.875 130.672 18.250
Rouse 15 Apr 2009 Downgrade to D 28.250 8.585 29.250
Abitibi 17 Apr 2009 Acceleration of Debt 3.750 234.247 3.250
Charter 21 Apr 2009 Chapter 11 1.375 49.2 2.375
Communications
Capmark 22 Apr 2009 Default 22.375 115.050 23.375
Idearc 23 Apr 2009 Chapter 11 1.375 889.557 1.750
Bowater 12 May 2009 Chapter 11 14.000 117.583 15.000
R.H.Donnelly Corp. 11 Jun 2009 Chapter 11 4.875 143.900 4.875
General Motors 12 Jun 2009 Chapter 11 11.000 -529.098 12.500
Visteon 23 Jun 2009 Chapter 11 4.750 179.677 3.000
Six Flags 9 Jul 2009 Chapter 11 13.000 -62.000 14.000
Lear 21 Jul 2009 Chapter 11 40.125 172.528 38.500
CIT 1 Nov 2009 Chapter 11 70.250 728.980 68.125

Table 2 summarizes auction results for 23 US firms for which the TRACE data is available.
It reports a settlement date, a type of credit event, inside market quote (per 100 of paer),
net open interest (in millions of USD), and final auction settlement price (per 100 of par).
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Table 3
Tradable Deliverable Bond Summary Statictics

Name Number of Notional amount NOI/NOA Average price
deliverable outstanding (%) on the day before

bonds (NAO) the auction

Dura 1 350,000 5.71 25.16
Dura Subordinated 1 458,500 16.79 5.34
Quebecor 2 600,000 11.00 42.00
Lehman Brothers 157 42,873,290 11.47 12.98
Washington Mutual 9 4,750,000 20.80 64.79
Tribune 6 1,346,515 56.81 4.31
Lyondell 3 475,000 30.15 26.57
Nortel Corp. 5 3,149,800 9.22 14.19
Smurfit-Stone 5 2,275,000 5.65 7.77
Chemtura 3 1,050,000 9.40 26.5
Great Lakes 1 400,000 32.65 26.71
Rouse 4 1,350,000 0.63 29.00
Abitibi 10 3,000,000 7.81 4.61
Charter Communications 17 12,769,495 0.38 2.00
Capmark 2 1,700,000 6.79 22.75
Idearc 1 2,849,875 31.21 2.15
Bowater 6 1,875,000 6.27 14.12
R.H.Donnelly Corp. 7 3,770,255 3.81 5.12
General Motors 16 18,180,552 -2.91 11.17
Visteon 2 1,150,000 15.62 74.87
Six Flags 4 1,495,000 -4.14 13.26
Lear 3 1,298,750 13.28 39.27
CIT 281 22,584,893 3.29 69.35

Table 3 provides summary statistics of deliverable bonds for 23 US firms for which the
TRACE data is available. The third column reports the ratio of the net open interest
(NOI) from Table 2 to notional amount outstanding of deliverable bonds. The last column
shows a weighted average bond price on the day before the auction, constructed as described
in Section 4.1.
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Figure 1: IMM determination: the case of Nortel
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Figure 1 displays all the bids sorted in the descending order and all the offers sorted in the ascending

order. The tradeable quotes (bid greater than offer) are discarded for the purposes of computing

IMM. The dealers that quote tradeable markets has to pay a penalty (adjustment amount) to ISDA.

The cap price is higher than the IMM by 1% of par and is used in the course of determination of

the final price. (If the open interest is to buy the cap price is below the IMM).
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Figure 2: Bids at the cap price
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Figure 2 shows the individual bids scaled by NOI at the cap price represented by different colors in

auctions, in which the final price is capped.
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Figure 3: Bond and Auction Prices
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Figure 3 shows the representative bond prices from the day before the auction scaled by the auction

price.
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Figure 4: Price Discount
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y = 0.93 + 2.6x 
Std.Err    (0.41)
R2=0.65

Figure 4 shows results of an OLS regression of the ratio of the weighted-average market price of
bonds a day before an auction to the final auction price on the scaled NOI:

yi = α+ β ×NOIi/NAOi + εi.
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Figure 5: Price Impact
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Figure 5 shows daily volume-weighted bond prices, constructed as described in Section 4.1, nor-

malized by the auction settlement price, pA, and averaged across 23 auctions reported in Table

2.
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