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Abstract
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1 Introduction

Modern portfolio theory and the capital asset pricing model (CAPM) suggest that investors

diversify idiosyncratic risks and only systematic risk is priced in equilibrium. The empiri-

cal evidence on idiosyncratic stock return volatility (IV ol) and stock returns is not readily

explained by this simple intuition. One strand of the literature (e.g., Duffee (1995)) estab-

lishes that changes in monthly realized IV ol is contemporaneously positively related with

risk-adjusted stock returns (positive IV ol anomaly hereafter).1 A different strand (e.g.,

Ang, Hodrick, Xing, and Zhang (2006)), on the other hand, establishes that portfolios of

stocks with high end-of-month realized IV ol significantly under-perform their low IV ol

counterparts on a risk-adjusted basis (negative IV ol anomaly hereafter), casting doubts on

the notion of a positive risk premium for idiosyncratic return risk.2,3 Yet, a third strand

of the literature establishes that the negative IV ol anomaly is due to strong return re-

versals among a subset of small stocks (e.g., Huang, Liu, Rhee, and Zhang (2009) and

Fu (2009)). Given the lack of consensus, it is not surprising that progress in delivering a

unified explanation for the above empirical findings has been difficult.

In this paper, we reconcile these seemingly disparate empirical regularities in a simple

equity valuation model of firms with real options and stochastic idiosyncratic operating risk.

The model is stylized to highlight key predictions, which are then validated by numerical

simulations and supported empirically. We demonstrate that, contrary to conventional

wisdom, the presence of stochastic idiosyncratic operating risk imparts a close relationship

between stocks’ risk-adjusted returns and IV ol if firm valuations incorporate convexities

in the firms’ output price, a feature that we attribute to the firms’ real options. The firm’s

currently producing assets – the assets-in-place – have linear valuations in the profit flow,

and therefore, are invariant with respect to the firm’s idiosyncratic operating risk. As a

1Spiegel and Wang (2006), Fu (2009) and Huang, Liu, Rhee, and Zhang (2009) also report a positive
correspondence between idiosyncratic return volatility and stock returns at the firm or portfolio level.

2Ang, Hodrick, Xing, and Zhang (2009) also report similar findings using international return data.
3Earlier empirical papers investigating idiosyncratic volatility and returns in the cross section are

Lintner (1965), Tinic and West (1986) and Lehmann (1990).
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consequence, we argue that the relation between risk-adjusted stock returns and IV ol is

entirely attributed to the firms’ reliance on real options and their exposure to stochastic

firm-specific operating risk. We demonstrate that the proposed mechanism reconciles the

conflicting anomalies related to IV ol in the cross-section of stock returns.

The intuition for our results is as follows. Assuming a Markov regime-switching process

for the firm-specific operating risk allows the switches in idiosyncratic operating risk to be

accompanied by changes in option valuations, hence stock returns exhibit discrete jumps

in the direction of the switches.4,5 As a consequence, expected returns are composed of

two regime dependent components: a continuous drift term that prevails between switches,

and a probability weighted jump term that is triggered when a switch occurs. Since the

continuous drift component compensates for the jump term in normal times absent of

jumps, realized returns are on average larger than expected when volatility is high, and

lower than expected when volatility is low. When a switch arrives, the jump term dominates

and realized returns are on average inversely related with idiosyncratic return risk. In the

language of asset pricing, realized returns larger than expected translates to positive risk-

adjusted or abnormal returns. The model produces continuation in risk-adjusted returns

followed by large reversals in tandem with movements in idiosyncratic return volatility.

This regime dependency and the time-series pattern of the firm’s operating risk help

establish predictability in risk-adjusted returns that extends to capture the cross-sectional

variation of stock returns associated with IV ol. The positive IV ol anomaly is explained

by the cross-sectional dispersion in abnormal returns driven by the firms that experience

changes in idiosyncratic operating risk. The negative IV ol anomaly, on the other hand, is

explained by the regime dependency of the betas6, coupled by the predictability of the di-

4A 2-regime Markov switching process is assumed for tractability, but it is not with loss of generality.
Qualitatively, our results should persist in a more general structure insofar as idiosyncratic risk exhibits
mean reversion.

5Guo, Miao, and Morellec (2005) and Hackbarth, Miao, and Morellec (2006) also develop a 2-regime
Markov switching process in state dynamics to investigate investment and capital structure decisions,
respectively.

6The firm’s equity beta is inversely related with the firm’s idiosyncratic operating risk due to a low
systematic component when the option value is high.
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rection of the subsequent switch conditioned on the regime, which generates predictability

of the direction of future reversals in risk-adjusted returns. In portfolio-based asset pricing

tests, sorting and grouping stocks on month-end realized IV ol is akin to grouping stocks

on the firms’ most recent operating risk and portfolios of IV ol-ranked stocks exhibit differ-

ences in risk-adjusted returns. Taken together, the model generates risk-adjusted returns

that correlate positively with contemporaneous changes in IV ol, but negatively with past

realized IV ol, reconciling two disparate and conflicting anomalies not previously considered

jointly in a single framework.

We validate our intuition with numerical simulations. Using a panel of simulated data

of risk-adjusted returns, we recreate results qualitatively similar to Duffee (1995) and Ang,

Hodrick, Xing, and Zhang (2006), with more pronounced effects when we use a larger spread

in idiosyncratic operating risk between regimes. When we specify a single volatility regime

– the standard specification in most real option models – we find that the model generates

no link between IV ol and risk-adjusted returns. Therefore, the simulations validate that

our explanation is the driving mechanism behind the results, not other potentially opaque

features of the model.

Our model also helps understand the findings that the negative intertemporal relation

between IV ol and future stock returns is largely explained by the return reversal of stocks

with high IV ol among a subset of small stocks (e.g., Huang, Liu, Rhee, and Zhang (2009))

and Fu (2009)). More specifically, small stocks with high IV ol exhibit stronger positive

contemporaneous correlation with returns, subsequently leading to stronger reversals and

lower abnormal returns. Pontiff (2006) offers an explanation based on high transaction costs

and limits to arbitrage to point to the persistence of low returns among small and high

IV ol stocks. An alternative possible explanation can be based on Daniel, Hirshleifer, and

Subrahmanyam (1998), who offer an explanation of cognitive bias and persistent mispricings

in financial markets. Our model is able to generate strong return reversals through the

dynamics of the volatility structure embedded in the operations of small firms that posses
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growth opportunities, or real options. Our explanation is based on a rational theory of firms

that face uncertain operating environments and observable firm characteristics, rather than

on market imperfections or investors’ cognitive biases.

The novel contribution of this paper is to highlight that real options, in conjunction

with stochastic firm-specific operating risk, can explain the conflicting empirical relation

between risk-adjusted returns and IV ol. The bulk of our empirical analysis is focused on

reporting this link and verifying the predictions of our theory. To investigate our conjecture

on the positive contemporaneous relation between IV ol and returns, we revisit Grullon,

Lyandres, and Zhdanov (2010) by recreating many of their empirical proxies for firms’

reliance on growth options, and additionally, creating some of our own proxies. Our re-

gression specifications are similar to those of Grullon, Lyandres, and Zhdanov as well, with

additional specifications in which we include the difference between the stocks’ 70th and

30th percentile in-sample breakpoint values of IV ol as an additional explanatory variable

to proxy for the spread in idiosyncratic operating risk across volatility regimes. Using a

battery of real option intensity proxies, we find that the positive contemporaneous relation

between returns and changes in IV ol is stronger among firms that are more likely to incor-

porate real options and experience more extreme changes in IV ol, results that lend strong

support to our model.

In order to investigate our conjecture on the poor performance of high IV ol stocks,

we revisit Ang, Hodrick, Xing, and Zhang (2006) by sorting and grouping stocks into

portfolios based on the level of their month-end realized IV ol, and independently, on the

firms’ real option proxy, and on the difference between the stocks’ 70th and 30th in-sample

percentile breakpoint values of IV ol. As in most asset pricing tests, we assess the portfolio

performances by investigating value-weighted risk-adjusted returns relative to the Fama

and French 3-factor model. Again, using a battery of real option intensity proxies, we find

that the poor future performance of high IV ol stocks is more pronounced among firms that

are more likely to incorporate real options and experience more extreme changes in IV ol,
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results that are in strong agreement with our model.

The model we propose captures additional empirical testable features. To the extent

that stock returns incorporate firms’ real options and stochastic firm-specific operating

risks, stocks that experience an up (down) IV ol-switch episode should be associated with

higher (lower) post-switch risk-adjusted returns to reflect the regime dependency of the risk-

adjusted returns. In order to investigate this novel conjecture, we compute the difference in

5-month risk-adjusted average returns around the month in which a stock’s IV ol undergoes

a sudden change larger than the difference between its 70th and 30th in-sample percentile

breakpoint values and employ event studies. Using a battery of real option intensity proxies,

we find that in the up-switch sample the difference between post and pre-switch returns

is positive, while in the down-switch sample the difference in returns is negative. We also

find that this ’switch effect’ is amplified for more real option intensive firms and firms that

experience more extreme changes in IV ol. Here again, the results are in strong support of

our theory.

Corporate investment decisions are commonly modeled in the context of growth op-

tions,7 and growth options are shown to affect firm risks. Berk, Green, and Naik (1999)

were among the first to establish a link between corporate investment-based characteristics

and firm betas to explain anomalous regularities in the cross section of stocks.8,9 We con-

tribute to this literature by integrating a new dimension – stochastic operating risk – with

real options to explain the empirical regularities related to IV ol. A common theme in the

extant literature investigates how much real options contribute to the firm’s market beta

relative to the firm’s assets-in-place, a feature present in our model as well. Our contri-

bution hinges on how firm-specific risks in operations affect the firms’ market risk through

7This approach was first pioneered by MacDonald and Siegel (1985), MacDonald and Siegel (1986) and
Brennan and Schwartz (1985), and later adopted by many others. Dixit and Pindyck (1994) summarizes
the body of literature.

8Fama and French (1992) provide evidence on the ability of size and book-to-market to explain returns.
Fama and French (1996) provides a cross-sectional landscape view of how average returns vary across stocks.

9Further work in this area have also focused on real options to build a bridge between firms’ character-
istics and market betas (e.g., Carlson, Fisher, and Giammarino (2004), Zhang (2005), Sagi and Seashole
(2007) and Garlappi and Yan (2011), among many others).
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the firms’ real options. In our model, the idiosyncratic volatility of a firm’ output price

serves as an additional state variable that affects the market beta of the firm’s real options,

but not the market beta of the firm’s assets-in-place, a channel previously not considered

as a link between firm observable characteristics and expected stock returns. Furthermore,

the literature has relied on imperfect measures of firm risk to reconcile predictions with

the empirical evidence. Although we don’t refute that betas are likely to be mismeasured

in practice, in our model the IV ol anomalies are not anomalous relative to the correctly

specified asset pricing model. We additionally contribute to the literature by investigating

truly residuals effects since our predictions and empirical tests are on the cross-sectional

variation of risk-adjusted returns associated with idiosyncratic return volatility.

We also make a contribution to the broader literature on the cross-section of stock

returns. By explicitly considering time-varying firm-specific operating risk allows us to

propose a novel channel between the operating environment that firms face and the firms’

stock returns, providing fertile grounds for additional research. The novel features of our

model yield additional testable predictions on the correspondence between IV ol and risk-

adjusted stock returns, some of which we test empirically in this paper.10

To our knowledge little inroads have been made to link idiosyncratic operating risk to

asset pricing, a void we hope to fill with this paper. The economics literature has recognized

that firm-level idiosyncratic technology shocks aggregate to create macroeconomic effects

(e.g. Caballero and Pindyck (1996)) and Bloom (2009)). Also, it has been shown that

the presence of idiosyncratic shocks in a competitive industry of firms with growth options

translates to the firms’ potential to retain monopolistic rents (e.g. Ch. 8 of Dixit and

Pindyck (1994)).11 Incorporating time varying idiosyncratic operating risks ensures that

firms have time-varying potential to retain monopolistic rents, motivating the importance

of idiosyncratic operating risk as a determinant of firm value and stock returns.12

10Schwert (2003) highlights the merits of structural models in deriving new testable hypotheses.
11Idiosyncratic shocks contrasts from aggregate shocks since the latter are shared among competing

firms, but the former provides a unique advantage that is not shared with the competitors.
12This paper does not explicitly consider a competitive industry equilibrium with multiple firms as in
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The rest of the paper is organized as follows: Section II presents the model environment.

Section III derives closed-form solutions for the valuations and returns. Section IV discusses

model simulation results. Section V reports the empirical methodology along with the

results. Section VI concludes. The Appendix contains all the proofs and other technical

details omitted in the main body of the paper.

2 Model

We construct a growth option model similar in spirit to the models in Garlappi and Yan

(2008) and Carlson, Fisher, and Giammarino (2004).13 This section describes the firms’

economic environment.

2.1 The Environment

We consider two types of firms. Mature firms are producing units in the economy and

produce at full capacity. In contrast, young firms produce at a lower operating scale, but

have the option to make an irreversible investment and increase production and become

mature. Firms are all equity financed. The output price of each firm follows a geometric

Brownian motion

dP

P
= µdt+ σP,idB1 + σAdB2 (2.1)

where µ is the growth rate, σA is the market volatility, σP,i is the idiosyncratic volatility,

and dB1 and dB2 are the increments of two independent Brownian motions. Time and firm

subscripts throughout are omitted for convenience.

Caballero and Pindyck (1996) or Dixit and Pindyck (1994). In an earlier draft, we considered an industry
equilibrium model of firms with entry and exit and idiosyncratic operating risk similar to the one consider
in this paper. We found the qualitative implications for IV ol and stock returns to be the same.

13With no loss of generality, we rely specifically on growth options to incorporate convexity of firm
valuations in the firms’ output price. Other forms of real options that incorporate convexities would
accommodate similar results.
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We allow firms to have random and time-varying potential to realize monopolistic rents

by allowing idiosyncratic operating risks to be time varying.14 σP,i follows a 2-state Markov

switching process 15

△σP,i =



σP,H − σP,L , with prob. λHdt, if i = L

0 , with prob. 1− λHdt, if i = L

σP,L − σP,H , with prob. λLdt, if i = H

0 , with prob. 1− λLdt, if i = H

(2.2)

where σP,H − σP,L > 0, and λL and λH are known transition parameters between high

and low volatility regimes H and L. The switches between the two regimes △σP,i are

independent Poisson processes and independent across firms. Both P and the volatility

regime i are observable for any given firm.16 We subscript quantities with i ∈ {H,L}

throughout to denote their dependence on the idiosyncratic volatility regime at any given

time.

All sources of operating uncertainty are driven by the uncertainty in the price of the

firm’ output. Investors in the stock market can hedge market risk in the firms’ operations

by trading on two securities. Let Mt denote the price of the risk free asset with dynamics

dM

M
= rdt (2.3)

14Dixit and Pindyck (1994) and Caballero and Pindyck (1996) show that idiosyncratic shocks trans-
lates to a firm’s ability to retaining monopolistic rents – a firm that experiences a positive idiosyncratic
technology shock experiences an advantage that cannot be stolen by its competitors, while a positive ag-
gregate shock is shared with the firm’s competitors. Some plausible micro-economic examples for a change
in idiosyncratic operating risk are: shifts in consumer needs and wants, persistent changes in production
technology, or changes in the general operating environment of the firm or the firm’s industry, among
others.

15Assuming a 2-state Markov- switching process is not without generality. A model with a more general
volatility structure is possible, but at a cost of analytical tractability.

16Conditioned on being in the high volatility state, the probability that △σP,i will switch to the low
volatility regime in the next short interval dt is λLdt. λHdt is defined similarly. Based on standard
properties of Poisson processes, the expected duration that the process dP will stay in the high volatility
regime H and the low volatility regime L are λ−1

L and λ−1
H , respectively. The proportion of time spent in

the high and low volatility regimes are λH

λH+λL
and

(
1− λH

λH+λL

)
respectively.
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and let S be the price of a risky security with dynamics

dS

S
= µSdt+ σSdB2 (2.4)

S has a beta equal to one and λ = µS−r
σS

is the market price of risk. The proportion of S

held in a replicating portfolio determines the beta of the portfolio. This greatly simplifies

firm valuations and the determination of firm betas.

2.2 The Value of a Mature Firm

The equity value of a mature firm is composed of the profit stream from selling the output.

The cost of producing a unit of output is c per unit of time. ξM denotes the scale of

production, therefore the profit per unit of time is πM(P ) = ξM(P − c). The equity value

of a mature firm is given as follows

VM(P ) = ξM

(
P

r − µ∗ − c

r

)
(2.5)

where µ∗ = µ−σAλ < r. The firm value is the present value of a growing risky perpetuity,

less the present value of a riskless perpetuity.

2.3 The Value of a Young Firm

Young firms produce at a lower capacity than mature firms, i.e. ξY < ξM , therefore the

profit per unit of time is πY (P ) = ξY (P − c), but possess a perpetual option to increase

production scale by ξ = ξM − ξY upon making a one time irreversible investment of I.

For simplicity, we assume that financing is done by equity. Young firms derive value from

assets currently in production, or assets-in-place, and the growth option. The value of the

assets-in-place have the same functional form as equation (2.5) with ξM replaced by ξY .

The equity value of a young firm is given as follows
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VY,i(P ) = ξY

(
P

r − µ∗ − c

r

)
+GOi(P ) (2.6)

where the value of the growth option GOi(P ) obeys the following Bellman equation

GOi(P ) = e−rdtEQ [GOi(P + dP, σP,i +△σ)] (2.7)

with a value realization upon exercise net of cost of ξ
(

P
r−µ∗ − c

r

)
− I, and EQ[.] denotes

the expectation operator under the Q measure. The convexity of the option value with

respect to the firm’s operating risk ensures that the firm value and the decision to expand

are dependent on both P and the volatility regime i. Optimal exercise requires to choose

when to invest, which occurs at time τi. Define P ∗
i the price level at which a young firm

exercises its growth option. The choice of P ∗
i describes the strategy for a young firm, and

the strategy chosen that satisfies the optimality conditions maximizes the value of the firm.

2.4 Equity betas and Expected Returns

Equity expected returns differ in the cross-section based on the firms’ maturity, price of

output, and the idiosyncratic volatility regime in effect. The expected return of a young

firm can be expressed according to the CAPM as

E

[
πY (P )dt+ dVY,i(P )

VY,i(P )dt

]
= r + βVY ,i(P )σSλ (2.8)

where βVY ,i(P ) denotes the firm’s CAPM beta conditional on i and P . Because the option

value and the decision to invest is dependent on the realization of the volatility regime, the

equity beta of young firms are also dependent on the volatility regime.
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3 Model Solution

This section describes the model solution. We discuss the properties of the solution and

their empirical predictions.

3.1 Valuation

The following proposition states the valuation and the exercise threshold of the investment

option.

Proposition 1 If the price process is given by (2.1) and (2.2), then the value of a growth

option in the region of low values of P , P ∈ (0, P1), is

FH(P ) =
BL,1P

β2,1qL(β2,1)

λH

+
BL,2P

β2,2qL(β2,2)

λH

(3.1)

if P is in the high volatility regime, and

FL(P ) = BL,1P
β2,1 +BL,2P

β2,2 (3.2)

if P is in the low volatility regime.

In the region of intermediate values of P , P ∈ (P1, P2), the option value is

GH(P ) =
λL

λL + r

(
ξ

(
P

r − µ∗ − c

r

)
− I

)
+ CH,1P

β1,1 + CH,2P
β1,2 (3.3)

if P is in the high volatility regime, and

GL(P ) = ξ

(
P

r − µ∗ − c

r

)
− I (3.4)

if P is in the low volatility regime. Moreover, the optimal exercise boundaries P1 and P2
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are the solution to the following system of equations

CH,1P
β1,1

1 + CH,2P
β1,2

1 − λL

λL + r

(
ξ

(
P1

r − µ∗ − c

r

)
− I

)
=

BL,1P
β2,1

1 qL(β2,1)

λH

+
BL,2P

β2,2

1 qL(β2,2)

λH

(3.5)

β1,1CH,1P
β1,1

1 + β1,2CH,2P
β1,2

1 +
ξP1λL

(r − µ∗) (λL + r)

=
β2,1BL,1P

β2,1

1 qL(β2,1)

λH

+
β2,2BL,2P

β2,2

1 qL(β2,2)

λH

(3.6)

where the expressions for BL,1,BL,2,CH,1, CL,1, qL(β), β1,1, β1,2, β2,1 and β2,2 are given in

the Appendix.

Proof: See Appendix.

The proposition states that young firms have separate investment policies in each volatility

regime. There are three distinct regions in the range of possible values of P to consider

(Guo, Miao, and Morellec (2005)). In the region where P ∈ (0, P1), the value of the

investment is below the cost in both volatility regimes, and the option value is given by

(3.1) and (3.2). In the region where P ∈ (P1, P2), the value of the investment exceeds the

cost only in the low volatility regime, and the option is kept alive in the high volatility

regime only.17 The option value is given by (3.4) and (3.3) in this region. Lastly, in the

region where P > P2, the investment value exceeds the value to keep the option alive in

both volatility regimes. The option value ξ
(

P
r−µ∗ − c

r

)
− I reflects immediate investment

and the value of the incremental increase in production scale.

More importantly, the proposition reveals that growth options have distinct valuations

across volatility regimes, a feature that contrasts starkly from the firm’s assets-in-place or

a mature firm whose values are invariant with respect to the volatility regime. The reliance

of the firm’s equity value on the regime of the idiosyncratic operating risk is attributed

17This property hinges on standard option pricing results that the value of an option is increasing in
the volatility of the underlying asset.
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entirely to the firm’s growth options.

Insert Figure 1 here

Figure 1 provides a graphical illustration of Proposition 1 for different set of parameter

values of σP,H and σP,L. Comparing the graphs across panels reveals that the opportunity

to expand has a larger valuation in regime i = H than in regime i = L, and the difference

is increasing in the spread between σP,H and σP,L. The last panel reveals that the model

results in a single valuation profile if σP,H = σP,L, which is the usual specification in

standard growth option models.

3.2 Returns

This section reveals that the growth option’s dependence on the firms’ idiosyncratic oper-

ating risk has important implications for the time-series and the cross-sectional variation

in stock returns.

Proposition 2 If the price process is given by (2.1) and (2.2), and Fi(P ), i ∈ {H,L}, is

given by (3.1) and (3.2), then Fi(P ) has the following dynamics

dFi(P )

Fi(P )
= ai(P )dt+ bi(P )dBi + νi(P )dzi (3.7)

where dBi =
σP,idB1+σAdB2

σi
, σi =

√
σ2
P,i + σ2

A, dzi is a Poisson process that is perfectly

functionally dependent on ∆σP,i as given in (2.2), and

aH(P ) > aL(P ) (3.8)

bH(P ) > bL(P ) (3.9)

νH(P ) < 0 < νL(P ) (3.10)

Furthermore, Fi(P ) has risk-adjusted returns relative to the CAPM with the following
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dynamics

dFi(P )

Fi(P )
− [r + βFi

(P )σSλ] = −λi′νi(P )dt+ bi(P )dBi + νi(P )dzi (3.11)

where i′ = L if i = H and vice-versa, and

βH(P ) < βL(P ) (3.12)

where the inequalities (3.8), (3.9), (3.10), and (3.12) are increasing in the spread between

σP,H and σP,L, and the expressions for aH(P ), bH(P ), νH(P ), βH(P ), aL(P ), bL(P ), νL(P )

and βL(P ) are given in the Appendix.

Proof: See Appendix.

Proposition 2 conveys the central idea of our paper. The dynamics for the value of a

growth option differs between volatility regimes, a feature inherited from the dependance

of the value of the option on the volatility regime. Since firm values incorporate growth

options, the value of a young firm obeys the laws of motion pertaining to the volatility

regime in effect. In ‘normal times’ absent of a switch, the firm value dynamics is determined

by the first two terms of (3.7), the drift and the diffusion terms ai(P ) and bi(P ) respectively.

However, on average every 1/λi units of time, a sudden and relatively large change in firm

value contributed by νi(P ) in (3.7) is activated by the arrival of a switch, after which the

dynamics obeys the law of motion pertaining to the new volatility regime. The dynamics

stays the same until the next switch arrives. This property of the value process is attributed

to the firm’s growth option and amplified by the spread between σP,H and σP,L. In contrast

to growth options, the value of the assets-in-place and the value of mature firms are invariant

with respect to the volatility regime. Consequently, they have continuous returns and do

not exhibit jumps.18

18The dynamics for the value of the assets-in-place and mature firms is given in the technical appendix.
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The expression for the option’s risk-adjusted returns relative to the CAPM is given in

equation (3.11) of the proposition. The equation imparts a close cross-sectional relationship

between idiosyncratic stock return volatility and risk-adjusted returns that is testable em-

pirically. In line with our intuition, the proposition shows that bH(P ) > bL(P ), establishing

a positive correlation between the firms’ idiosyncratic stock return volatility and idiosyn-

cratic operating risk. The jump term νi(P ), if triggered, is positively associated with the

sign of the switch in volatility but correlates inversely with the previous volatility regime,

i.e. νH(P ) < 0 < νL(P ). This suggests that the stock returns of growth option firms should

exhibit positive contemporaneous correlation with changes in idiosyncratic return volatility

and negative correlation with past return volatility, in line with the positive IV ol anomaly

of Duffee (1995) and the negative IV ol anomaly of Ang, Hodrick, Xing, and Zhang (2006),

the two main disparate empirical anomalies we address in this paper.

In our model, the positive IV ol anomaly is explained by the jumps in stock returns of

growth option firms experiencing a switch in idiosyncratic operating risk. Similarly, the

negative IV ol anomaly is explained by the future jumps in stock returns of growth option

firms due to the arrival of a switch in idiosyncratic operating risk. In portfolio-based asset

pricing tests, sorting and grouping stocks by month-end realized IV ol is akin to grouping

stocks on the firms’ current volatility regime. The highest IV ol portfolio oversamples firms

with high operating risk while the opposite holds for the lowest IV ol portfolios. Portfolios

sorted by IV ol exhibit differences in future risk-adjusted returns reflecting future reversals

in the firms’ idiosyncratic operating risk.

Equation (3.11) of the proposition offers the basis for a novel prediction on the relation

between risk-adjusted stock returns and idiosyncratic return volatility which we also test

empirically in the sequel. The drift of the option’s risk-adjusted returns given in equation

(3.11) relates positively with idiosyncratic return volatility, i.e. −λLνH(P ) > −λHνL(P ),

while the jump term relates inversely, i.e. νH(P ) < 0 < νL(P ). That is, during normal

times absent of jumps, realized return in excess of expectations is continuous and tends to be
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positive (negative) when volatility is high (low), but a relatively large offsetting ‘correction’

occurs upon the arrival of a switch in volatility. In the language of asset pricing, realized

returns greater than expectation translates to positive abnormal returns. The proposition

reveals that abnormal stock returns should exhibit continuation that correlates with the

level of idiosyncratic return volatility, followed by strong reversals that concur with changes

in idiosyncratic return volatility. This model prediction is consistent with the evidence that

the negative IV ol anomaly is mainly due to strong return reversals after previous increases

in stock prices (Fu (2009) and Huang et al. (2009)). We confirm this prediction in the

sequel with our own empirical tests.

Some additional comments are in order. The expectation of the right hand side of

(3.11) evaluates to zero, hence the implication is that on average abnormal returns vanish

for a single firm if the central limit theorem holds. The implication for the cross-section,

however, hinges on the stock returns’ dependence on the path of their volatility regime.

Intuitively, the model implies that the jumps in stock returns within a month constitute

the outliers in monthly cross-sectional return regressions that loads on the changes in IV ol,

contributing to the positive statistical relation between IV ol and stock returns. Regarding

the negative association between IV ol and future stock returns, the implication is that

large firm valuations due to greater option values precede negative future jumps in returns

for stock of firms that experience a switch. In portfolio-based tests, value-weighting stock

returns ensures that the negative jumps in high-IV ol portfolios receive a greater emphasis

than the positive jumps in low-IV ol portfolios. Thus, the negative IV ol anomaly is a

consequence of the low value-weighted portfolio returns of high-IV ol stocks, rather than

the high portfolio returns of low-IV ol stocks. Consistent with this prediction, we find

empirically that the negative IV ol anomaly is mainly due to the low future portfolio returns

of high-IV ol stocks and that the anomaly does not hold up if portfolio returns are equally-

weighted.19

19In our sample, the average difference in pricing errors relative to the Fama and French (1993) 3-factor
model between the top and bottom quintile portfolios of stocks sorted by IV ol is 0.04% per annum and
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Lastly, the proposition establishes that the option’s beta is regime dependent and it

relates inversely with idiosyncratic return volatility, i.e. βF,H(P ) < βF,L(P ), and the in-

equality is amplified by the spread between σP,H and σP,L. Intuitively, the positive asso-

ciation between option values and volatility translates to an inverse association between

the proportionate systematic component of total firm value and volatility, contributing to

an inverse relation between stock return beta and idiosyncratic stock return volatility.20

Because the risk-adjustment is in relation to the CAPM, the implication of the inverse re-

lation between beta and idiosyncratic volatility is to further strengthen the aforementioned

relation of the drift and the jump terms with idiosyncratic return volatility. In contrast

to growth options, the beta of mature firms and the assets-in-place of young firms are

invariant with respect to the volatility regime.21

In conclusion, Proposition 2 shows that our model is able to reconcile the two main

conflicting empirical anomalies on the cross-sectional variation of risk-adjusted returns

associated with idiosyncratic return volatility, and additionally, offers novel predictions

on risk-adjusted return continuation and reversals. We validate these predictions with

numerical simulations and empirical tests in the sequel.

Insert Figure 2 here (3.13)

Figure 2 provides a graphical illustration of Proposition 2 for different set of parameter

values of σP,H and σP,L. Panel (b) and (c) show that there is a positive difference in the

diffusion terms, i.e. bH(P ) − bL(P ), and the continuous drift terms, i.e. aH(P ) − aL(P ).

statistically insignificant if returns are equally-weighted when computing portfolio returns. In contrast,
the average difference in pricing errors between the top and bottom quintile IV ol-portfolios is -8.43% per
annum and highly statistically significant if returns are value-weighted, where the top quintile portfolio
has an average return of -6.96% and the bottom quintile portfolio has an average return of only 1.47% per
annum.

20This result is consistent with Galai and Masulis (1976), who show that ∂β
∂σ < 0 but does not consider

stochastic volatility in the firm’s assets, and with Johnson (2004), who shows that increasing uncertainty
about the value of a firm’s assets, while holding the risk premium constant, lowers the expected returns of
levered firms.

21The beta of mature firms and the assets-in-place is given in the technical appendix.
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Panel (d) of the figure shows that there is a negative difference in the jump terms νH(P )−

νL(P ). All the differences are increasing in the spread between σP,H and σP,L, suggesting

that the cross-sectional relation between risk-adjusted stock returns and IV ol is attributed

to firms that experience greater changes in operating risk. Lastly, the difference in all

quantities are identically zero if the volatility values are the same in both regimes, which

is the usual specification in standard growth option models.

4 Simulations

In this section, we rely on numerical simulations in order to investigate if our model can pro-

duce results qualitatively consistent with the main empirical findings in Duffee (1995) and

Ang, Hodrick, Xing, and Zhang (2006). Our goal is to create a laboratory as an environ-

ment in which to analyze the effects of real options and stochastic idiosyncratic operating

risk on the cross-sectional relation between risk-adjusted stock returns and idiosyncratic

return volatility.

We simulate a large panel of firm values using the solution equations from our model.

All quantities are simulated on a monthly frequency. We begin by simulating a single path

of St values using the process in equation (2.4), and 2,500 separate paths of Pt and volatility

values using processes (2.1) and (2.2) in order to generate a panel.22 Each simulated path

of Pt corresponds to the price series for the output of a firm in the cross-section.23 We use

a time horizon of 50 years for each price series and assume that there are 12 months in

each year. That corresponds to a total of 600 (50 years × 12 months) observations for each

firm. Then using equations (2.5), (2.6), (3.1), (3.2) and (3.3), we compute the firm value

for each of the 2,500 firms in each month.

The initial firm maturity is drawn from a uniform distribution with equal probabilities

for young and old. In order to ensure that mature firms do not dominate the panel overtime,

22See Hanson (2007) for a good description of simulations of mixed jump-diffusion processes.
23The data in our empirical study contains an average of 2,412 firms with non-missing sales growth

observations each month.
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we assume that mature firms exit the sample upon the arrival of an independent Poisson

event with intensity λexit = 0.01 per unit of time or if the firm value reaches zero due to

the realization of a low output price. Each month, exiting firms are replaced by new young

firms.

In order to carry out the asset pricing tests with the simulated data, we compute

monthly risk-adjusted returns for each firm in the panel. The risk-adjustment is relative

to the CAPM using the beta of Fi(P ) from Proposition 2 and the beta of GH(P ), VM

and the assets-in-place of young firms (equations (7.56) and (7.57) in the Appendix). The

young firms’ betas are computed as a weighted average of the betas of the firms’ assets-in-

place and growth options where the weights are based on the proportion of firm value from

growth. The beta of mature firms are the beta of the firms’ assets-in-place.

Once a full panel of sample equity values and returns is simulated, we use the simulated

data to carry out the main empirical analysis conducted by Duffee and Ang et al. and

store the results. We then repeat the entire process 100 times in order to arrive at a sample

of 100 sets of simulated results and estimates. Then t-tests are carried out the usual way

in order to investigate the estimates’ statistical significance. The entire simulation process

is repeated using three different sets of values for σP,H and σP,L in order to carry out

comparative static analysis. The choice of model parameters are summarized in Table 1.

Insert Table 1 here

Figure 3 shows a graphical illustration of a single simulated path of P , the corresponding

equity value V (P ), realized idiosyncratic operating volatility, realized month-end idiosyn-

cratic return volatility and realized month-end risk-adjusted returns for a firm j using the

base case set of model parameters. Panels (a) and (b) of the figure show that P and

the equity value V (P ) follow a similar patten, as expected. Panels (c) to (d) show that

month-end risk-adjusted returns and risk-adjusted return volatility appear to be regime
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dependent, as expected from Proposition 2.

Insert Figure 3 here

4.1 The Positive Return-Volatility Relation

In this section, we investigate if our model is qualitatively able to reproduce results similar

to the main empirical finding in Duffee (1995) (the positive IV ol anomaly).

To this end, we fit Fama and MacBeth (1973) monthly cross-sectional regressions of

log equity risk-adjusted return ret on ∆σP,t from our simulated data. The cross sectional

regression model for month t is

ret = γ0,tι+ γ1,t∆σP,t + ηt (4.1)

where ret is a vector of rej,t and ∆σP,t is a vector of ∆σP,j,t of all the firms j ∈ J , and ι is a

vector of ones.

Insert Table 2 here

The results of fitting regression (4.1) are reported in the first column of each panel of Table

2. The table shows that the return-volatility relation is positive and highly statistically sig-

nificant in the simulated samples where σP,H > σP,L. These results confirm the predictions

from our model that switches in idiosyncratic operating risk can generate results consistent

with Duffee. The table also shows that the positive IV ol anomaly is more pronounced for

larger spreads between σP,H and σP,L, but negligible and insignificant in the samples where

σP,H = σP,L. This confirms that the positive IV ol anomaly is driven by the stochastic na-

ture of the firms’ idiosyncratic operating risk, and not by other potentially opaque features

of our model.
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4.2 The Negative Return-Volatility Relation

In this section, we investigate if our model is qualitatively able to reproduce results similar

to the main empirical findings in Ang, Hodrick, Xing, and Zhang (2006) (the negative IV ol

anomaly) using our simulated data.

To this end, at the end of each month, we sort the simulated firms on σP into 10 decile

groups. Then, we compute value-weighted one-month portfolio returns for each of the ten

portfolios from the equity risk-adjusted returns. The portfolios are rebalanced at the end

of each month.

Insert Table 3 here

Table 3 reports the mean portfolio risk-adjusted returns along with the t-statistics for each

of the ten portfolios. The decile portfolios are reported across columns. The difference

between the highest and lowest volatility portfolios (the long-short portfolio) is reported

in the last column. Figure 4 provides a visual illustration of the means of the monthly

risk-adjusted returns for the ten decile portfolios reported in the table. The table shows

that the long-short portfolio has a highly statistically significant and negative risk-adjusted

return for simulated samples where σP,H > σP,L, results that are qualitatively consistent

with Ang, Hodrick, Xing, and Zhang. Furthermore, the table shows that the negative

IV ol anomaly is amplified for the simulation sample with a larger spread between σP,H and

σP,L, but negligible and insignificant for samples where σP,H = σP,L. This confirms that

the negative IV ol anomaly is driven by the stochastic nature of the firm’s idiosyncratic

operating risk, and not other potentially opaque features of the model.

Insert Figure 4 here

We conduct further analysis by fitting Fama and MacBeth (1973) monthly cross-sectional

regressions of equity risk-adjusted returns on lagged σP,i using the simulated data. The
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regression model for the for month t is

ret = γ0,tι+ γ1,tσP,t−1 + ηt (4.2)

The results of fitting regression (4.2) are reported in the second column of each panel

of Table 2. The table shows that there is a negative and highly statistically significant

return-lag volatility relation in the simulated samples where σP,H > σP,L. Furthermore,

the table shows that this negative relation is amplified by a larger spread in σP,H and σP,L,

but negligible and insignificant for samples where σP,H = σP,L. These results reaffirm the

earlier portfolio results.

Taken together, the reported results confirm that the real options in conjunction with

stochastic non-systematic operating risk may play a significant role in reconciling the pos-

itive and negative IV ol anomalies observed in the cross-section of stocks, conflicting em-

pirical puzzles that seem at odds with standard asset pricing arguments.

5 Empirical Analysis

In this section, we empirically test the predictions of our model and show empirical support

in the data.

5.1 Data, Variable Descriptions and Summary Statistics

We obtain daily and monthly stock returns from CRSP daily and monthly return files,

respectively. Daily and monthly factor returns and risk-free rates are collected from Ken

French’s website.24 Our sample period is from January, 197125 to December, 2010 for all

market-based variables. All our accounting variables are from annual COMPUSTAT files.

24http:// mba.tuck.dartmouth.edu/ pages/faculty/ken.french/data library.html
25Casual observation reveals that the annual number of firm observations on COMPUSTAT is relatively

low prior to the 70’s after applying the reported filters in addition with non-missing Sales and Net Income
observations.
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We consider only ordinary shares traded on the NYSE, AMEX and Nasdaq with primary

link to companies on COMPUSTAT with domestic data source and eliminate utility (SIC

codes between 4900 and 4999) and financial (SIC codes between 6000 and 6999) companies,

observations with a share price of zero, negative book equity values, and returns of firms

with less than one year of accounting data on annual COMPUSTAT files. In order to remove

the effects of delistings on stock returns, we eliminate return observations within one year of

delisting for stocks whose delisting code has the first digit different from 1. After computing

monthly idiosyncratic return volatility as described below, our sample size is over 1 million

monthly observations with non-missing return and idiosyncratic return volatility values.

5.1.1 Idiosyncratic Volatility

Testing our hypothesis requires a measure of idiosyncratic volatility of the firms’ funda-

mental shock variable. A number of papers, such as Leahy and Whited (1996) and Bulan

(2005), and Grullon, Lyandres, and Zhdanov (2010) have used the volatility of stock returns

as a proxy for the volatility of the firms’ operations. Motivated by the results stated in

Proposition 2 that bi(P ) relates to firm-specific operating risk, we adopt the same approach.

Following Ang, Hodrick, Xing, and Zhang (2006) and Ang, Hodrick, Xing, and Zhang

(2009), among others, we estimate the idiosyncratic return volatility (IV ol) for the stock

of firm j during the month t as the standard deviation of the firm’s daily return during

month t, i.e. τ ∈ (t− 1, t], relative to the Fama and French 3 factor model

rj,τ = αi + βj,MKTMKTτ + βj,SMBSMBτ + βj,HMLHMLτ + εj,τ (5.1)

More specifically, IV ol at month t is defined as IV olj,t =
√
var(log(1 + εj,τ )) where εj,τ ,

τ ∈ (t− 1, t], is the estimated residual from regression (5.1). As in Grullon, Lyandres, and

Zhdanov (2010), we use the logarithm of the residuals in order to mitigate the potential

mechanical effect of return skewness (see Duffee (1995) and Kapadia (2007)) on the relation
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between return and contemporaneous return volatility.26

We require monthly changes in IV ol to test the positive IV ol anomaly. To this end,

we define the monthly change in IV ol as

∆IV olj,t = IV olj,t − IV olj,t−1 (5.2)

Our model captures additional testable features related to how extreme firms experience

changes in IV ol. Towards this end, for each stock j in our sample, we define IV olj the

difference between the stock’s 70th and 30th percentile in-sample values of IV ol. We

consider these values to be the thresholds that determine the volatility regimes for each

stock. IV olj captures the spread between volatility regimes, or similarly, how large the

changes in IV ol tend to be for firm j.

5.1.2 Firm Characteristics

We require several observable firm characteristics shown in the literature to be determinants

of stock returns as controls when conducting cross-sectional return regressions. These

characteristics are the firms’ log market equity, log book-to-market, past stock returns,

CAPM beta and trading volume.27

26Chen, Hong, and Stein (2001) also find that using simple returns induces a pronounced correlation
between skewness and contemporaneous volatility.

27More specifically, following Fama and French (1993) market value of equity is defined as the share
price at the end of June times the number of shares outstanding, book equity is stockholders’ equity
minus preferred stock plus balance sheet deferred taxes and investment tax credit if available, minus post-
retirement benefit asset if available. If missing, stockholders’ equity is defined as common equity plus
preferred stock par value. If these variables are missing, we use book assets less liabilities. Preferred
stock, in order of availability, is preferred stock liquidating value, or preferred stock redemption value, or
preferred stock par value. The denominator of the book-to-market ratio is the December closing stock
price times the number of shares outstanding. We match returns from January to June of year t with
COMPUSTAT-based variables of year t − 2, while the returns from July until December are matched
with COMPUSTAT variables of year t − 1. This matching scheme is conservative and ensures that the
accounting information-based observables are contained in the information set prior to the realization of
the market-based variables. We employ the same matching scheme in all our matches involving accounting
related variables and CRSP-based variables. We define past returns as the buy-and-hold gross compound
returns minus 1 during the six-month period starting from month t−7 and ending in month t−2. Following
Karpoff (1987), trading volume is trading volume normalized by the number of shares outstanding during
month t. Lastly, stock CAPM beta is the estimated coefficient from rolling regressions of monthly stock
excess returns on the market factor’s excess returns. We use a 60-month window every month requiring
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5.1.3 Real Option Proxies

We require several firm characteristics to proxy for the firms’ reliance on real options.

We examine if the relation between the firms’ stock returns and IV ol is driven by the

dependence of real option values on firm-specific operating risk by comparing the strength

of this relation across firms with different intensities of real options.

Following the structural model of Merton (1974) and Merton (1992), the equity of a

firm is akin to a call option on the firm’s assets with the strike price equal to the total

face value of the firm’s debt. Basing on the knowledge that an option’s vega captures the

option’s sensitivity to the volatility of the underlying state variable, the relation between

IV ol and stock returns should be stronger for firms with high equity vega. To test this

hypothesis, for each firm j and year n, we define the firm’s equity vega based on the firm’s

capital structure and the Black and Scholes’ formula

vegaj,n = Vj,nN
′(dj,n)

√
5 (5.3)

where dj,n =
ln

(
Vj,n
Dj,n

)
+

(
rf,n−

σ2
j,n
2

×5

)
σj,n

√
5

, N ′(x) = exp(−x2/2)√
2π

, rf,n is the annualized risk free rate,

σj,n denotes firm j’s annualized six-month rolling window idiosyncratic volatility based on

the Fama French 3 factor model, Vj,n denotes the sum of the firm’s market equity value and

book value of debt, and Dj,n is the firm’s book value of debt. For simplicity, we assume

in (5.3) that firms have a debt maturity of 5 years. Because the equity vega is relatively

invariant over most of the range of debt and firm values28, it is useful to classify real option

intensity based on equity vega values in relation to other firms in the cross-section. To this

end, we identify high equity vega firms as firms with vega values in the top tercile where

the breakpoint values are found among NYSE firms in our the sample.

at least 24 monthly return observations in a given window, and use the procedure suggested in Dimson
(1979) with a lag of one month in order to remove biases from thin trading in the estimations.

28A call option’s vega is greatest when the option is at the money, and relatively low and invariant over
the remainder of possible prices for the underlying stock (see Hull (2011)).
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We follow Grullon, Lyandres, and Zhdanov (2010) in the construction of the remainder

of our proxies for real option intensity. The most common type of real options come in the

form of future growth opportunities (e.g., Grullon et al., Brennan and Schwartz (1985),

MacDonald and Siegel (1986), Majd and Pindyck (1987), and Pindyck (1988) among many

others). We consider firm size as an inverse measure of growth opportunities because larger

firms tend to be more mature and have larger proportions of their values from assets-in-

place, while smaller firms tend to derive value from growth opportunities (e.g., Brown and

Kapadia (2007) and Carlson, Fisher, and Giammarino (2004)). We define two measures of

firm size: the book value of total assets and the market value of equity. Our third (inverse)

proxy for growth options is firm age. Older, more established firms tend to derive larger

proportions of profits and firm value from assets-in-place (Lemmon and Zender (2010),

Carlson, Fisher, and Giammarino (2004)). Age is defined as the log of the difference

between the month of observation and the month in which the stock first appeared in the

CRSP monthly return files. We identify young firms and small firms if their age and size

are in the bottom tercile where breakpoint values are found among NYSE firms in our

sample.

Growth opportunities are revealed in growth measures realized in the future.29 We

define future profit growth as the sum of the growth rates from years t + 2 to t + 5 of

the firms’ operating profits.30 Future sales and investment growth are defined similarly.

Then in each year, we categorize firms as high future profit, high future sales, and high

future investment growth if they have values that exceed the top tercile breakpoint values

among NYSE firms in our sample for each of these three variables. Then we create new

categorical variables by combining the existing dummies (e.g. small and growth, small and

young, young and high profit growth) to expand our set of growth option proxies.

29As in Grullon, Lyandres, and Zhdanov, we are not concerned with potential issues related to look-
ahead bias since the focus of our paper is on investigating the relation between IV ol and risk-adjusted
returns, and not on predicting future stock returns.

30As in Grullon, Lyandres, and Zhdanov, we alleviate concerns of spurious correlations between con-
temporaneous surprises in growth and monthly returns by merging month t returns with growth variables
starting two years following the return observation.
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Lastly, it is natural to think that firms in certain industries possess more real options

than others, and firm valuations from real options may be captured by their industry

membership. We consider three main classifications of industry membership based on

Fama and French (1997) 49 industries. We define firms with membership in Fama and

French (FF) industries 27 (precious metals), 28 (mining), and 30 (oil and natural gas) as

natural resource firms. We classify firms in FF industries 22 (electrical equipment), 32

(telecommunications), 35 (computers), 36 (computer software), 37 (electronic equipment),

and 38 (measuring and control equipment) as high-tech firms. Membership in FF industries

12 (medical equipment) and 13 (pharmaceutical products) are defined as biotechnology or

pharmaceutical firms. Firms with membership in any one of the three aforementioned

industry classifications are defined as all-growth industry firms.

5.1.4 Summary Statitics

Table 4 reports summary statistics for the main variables in our study. Mean (median)

excess return in our sample is 0.9976% (-0.41%) per month or about 11.9712% (-4.92%) an-

nual. Mean (median) daily idiosyncratic stock return volatility IV ol is 2.9476% (2.2782%)

or about 44.0171% (34.0208%) annual. Our IV ol estimates are similar to those reported in

Ang, Hodrick, Xing, and Zhang (2006) and Grullon, Lyandres, and Zhdanov (2010). Mean

(median) month-to-month change in IV ol is -.0023% (-0.011%). The standard deviation is

2.1096% and similar to the figure reported in Grullon, Lyandres, and Zhdanov (2010).

Insert Table 4 here

5.2 Switches in Idiosyncratic Volatility and Stock Returns

The results of our model offers novel testable predictions on the relation between IV ol

and risk-adjusted stock returns. Proposition 2 reveals that risk-adjusted returns (3.11)

exhibit continuation that correlates with the level of idiosyncratic return volatility. If
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firm values are partially composed of real options, and subject to changes in volatility, then

stocks that experience up switches in idiosyncratic volatility should experience greater risk-

adjusted returns after the switch than before the switch. Conversely, stocks that experience

a down switch in volatility should experience lower post-switch risk-adjusted returns. The

difference between post and pre-switch returns should be amplified among more real option

intensive firms and firms that experience more extreme changes in idiosyncratic volatility

(the switch effect hereafter). We empirically test these predictions and provide supporting

evidence in this section.

To this end, we define an up switch event in IV ol in a given month for firm j if the

previous month’s IV ol was below its 30th percentile breakpoint value and if the current

month’s IV ol exceeds its 70th percentile breakpoint value, capturing the notion of a change

in volatility regime. A down switch event is defined similarly. Once all the up and down

switch events are identified for each stock, we compute the 5-month average of the risk-

adjusted returns ending in the month prior to the month of the switch event, and the

5-month average of the risk-adjusted returns beginning from the month after the switch

event. Then we investigate if the difference around the switch event-month in average

risk-adjusted returns depend on the firms’ real option characteristics. More specifically,

risk-adjusted returns are based on the Fama and French (1993) 3 factor model

r∗j,t = rj,t − rf,t −
3∑

k=1

β̂j,kFk,t (5.4)

where rj,t is the return on stock j in month t, rf,t is the risk-free rate, and Fk,t denotes one

of the 3 Fama and French factors (market excess return, size, and book-to-market factors)

and k ∈ [1, 3]. We estimate the factor loadings β̂j,k for individual stocks using monthly

rolling regressions with a 60-month window every month requiring at least 24 monthly

return observations in a given window. We use the procedure suggested in Dimson (1979)

with a lag of one month in order to remove biases from thin trading in the estimations.
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The difference in 5-month averages of the risk-adjusted returns between post and pre-switch

events when a switch episode occurs in month t is calculated as

rDiff
j,t =

1

5

t+6∑
τ=t+1

r∗j,τ −
1

5

t−1∑
τ=t−6

r∗j,τ (5.5)

We run separate Fama MacBeth cross-sectional regressions of differences in average

risk-adjusted returns on the measure of real option for the sample of up switch events and

the sample of down switch events. The regression model for month t is

rDiff
t = γ0ι+ γ1ROt−1 + ηt (5.6)

where rDiff
t is a vector of differences in the average of risk-adjusted returns around the

switch event month t, ι is a vector of ones, and ROt−1 is a vector of measures of real option

intensity. Our model’s predictions translate to tests that γ0 > 0 and γ1 > 0 (or γ1 < 0 for

inverse RO proxies) for the up switch event sample, and γ0 < 0 and γ1 < 0 (or γ1 > 0 for

inverse RO proxies) for the down switch event sample.

Insert Table 5 here

The results of estimating (5.6) are presented in Table 5.31 The table shows that up switches

in IV ol are positively (i.e. γ0 > 0) related to differences in risk-adjusted returns and

down switches are negatively (i.e. γ0 < 0) related to differences in risk-adjusted returns,

the relation being highly statistically significant in all of the specifications using different

criteria for real option intensity. This result is consistent with our model’s predictions on

the switch effect. In order to analyze the effects of real options on this relation, the table

shows that the loadings on the inverse real option proxies measured by total asset size,

market equity values and age are positive for the down switch sample, and negative for

31The results using unadjusted returns are available from the authors upon request, but they are not
materially different from the results using risk-adjusted returns.
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the up switch sample, indicating that the switch effect is stronger for more growth option

intensive firms.

The reported results using categorical variables as proxies for real option intensity are

also in favor of our predictions, with greater significance for the up switch sample than

for the down switch sample. The only exception occurs when the high vega dummy is

used as a real option criteria, whose coefficient estimate is positive and significant for the

down switch sample. However, if real option intensity is by the size small size and high vega

dummy, the coefficient estimates are significant and consistent with the model’s predictions

for both the up and down switch event samples. The coefficient estimate for the young

and high equity vega dummy is also in favor of our predictions for the up switch sample.

In the down switch sample, the estimate is positive but not statistically significant. Based

on these results, we argue that vega alone is not a strong measure of firms’ real options

unless it is combined with other real option characteristics to identify real option reliant

firms. Another reason for these results may be that the stocks of younger and smaller firms

are more sensitive to the firms’ shock variables than older and larger firms even if their

vegas are large, in line with the view that the stocks of small and young firms experience

larger reaction to operating risk when coupled with heavy borrowing than larger and older

firms.32

The results reported using industry dummies are weakly in favor of our model. The only

industry classification working in favor of the model’s predictions is the all-growth option

industry, while any one of natural resources, high tech or bio tech classifications alone turns

out to be statistically not significant. A possible reason for the relatively weaker results

using industry membership is that industry classification alone is a weak proxy for real

options since firms within industries may vary widely in their real option intensities.

Next we investigate how the strength of the switch effect is determined by the magnitude

of changes in idiosyncratic risk, ∆IV ol. We run separate monthly Fama MacBeth cross-

32Anecdotal evidences seem to point to this possibility.
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sectional regressions for each real option criteria and each of the down and up switch event

samples. The regression model for month t is

rDiff
t = γ0ι+ γ1∆IV ol + γ2∆IV ol ×ROt−1 + ηt (5.7)

where rDiff
t , ι and ROt−1 are as defined previously, and ∆IV ol is a vector of ∆IV olj. Our

model’s predictions translate to tests that γ1 > 0 and γ2 > 0 (or γ2 < 0 for inverse RO

proxies) for the up switch event sample, and γ1 < 0 and γ2 < 0 (or γ2 > 0 for inverse RO

proxies) for the down switch event sample.

Insert Table 6 here

The results of estimating (5.7) are presented in Table 6. The table shows that the coefficient

estimates for ∆IV ol (i.e. γ1) is positive and highly significant for the up switch sample and

negative and highly significant for the down switch sample in virtually all of the regression

specifications. The only exception occurs in the down switch sample if age is used as a real

option criteria where the coefficient estimate is negative but not statistically significant.

These results provide conclusive evidence in support of our model’s predictions on the

switch effect.

The table also reports the coefficient estimates for the interaction terms between ∆IV ol

and GO (i.e. γ2) from estimating (5.7). The loadings when firm size is measured by total

asset value is positive for the down switch sample and negative for the up switch sample,

with significance at the 10% and 5% levels respectively. The loadings when firm size is

measured by market capitalization value is negative for the down switch sample but not

significant, and negative for the up switch sample and highly statistically significant. We

conclude that size as an inverse measure of real options provide results that agree with our

model’s predictions that the switch effect should be stronger for more real option intensive

firms and firms that experience larger changes in IV ol. The interaction with age, on the
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other hand, provides inconclusive evidence since the estimated loadings are not significant.

Some of the results reported using categorical variables as proxies for real option in-

tensity are also in favor of the predictions of our model, with greater significance for the

up switch sample than for the down switch sample. The coefficient estimates for high fu-

ture profit growth, high future sale growths, high future investment growth, or small firms

with high future growth are all positive for the up switch sample with varying levels of

significance. In the down switch sample, none of the estimates are significant even though

the estimates are the predicted sign for a number of the specifications. Lastly, using in-

dustry dummies as proxies for real option intensity reveals that even though the estimates

for most of the specifications are in support of the model’s predictions, none of them are

statistically significant. We conclude from these results that there is stronger support for

the predictions of our model in the up switch sample than in the down switch sample.

5.3 Contemporaneous Relation Between Idiosyncratic Volatility

and Returns

In addition to the novel predictions on the switch effect, the model also offers a new

explanation for the existing empirical findings on the relation between idiosyncratic return

volatility and stock returns. In relation to the first extant empirical finding, our model

predicts that to the extent that firms own real options and are subject to changes in

idiosyncratic volatility, the positive IV ol anomaly should be stronger for more real option

intensive firms and firms that experience larger changes in idiosyncratic volatility. We test

this hypothesis and provide supporting evidence in this section.

In particular, following Grullon, Lyandres, and Zhdanov (2010) we estimate monthly

cross-sectional Fama and MacBeth (1973) regressions of individual stock returns on changes

in idiosyncratic volatility and growth options using the various alternative criteria to classify

real option intensity. The regression model for the cross section of stocks for time period t

is
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rt − rf,t = γ0ι+ γ1∆IV olt + γ2∆IV olt ×ROt−1 + γ3Xt−1 + ηt (5.8)

where rt is the vector returns, rf,t is the riskless rate, ι is a vector of ones, ∆IV olt is a

vector of changes in IV olt, ROt−1 is a vector of one of the firms’ characteristics used to

capture real option intensity, and Xt−1 is a matrix with columns of vectors of controls

for firm characteristics related to size, book-to-market, past returns, trading volume and

stock beta. Our main hypothesis is that the positive relation between stock returns and

idiosyncratic return volatility should be stronger for firms whose value incorporates more

real options. Therefore, our hypothesis translates to tests that γ1 > 0 and γ2 > 0 (γ2 < 0

for inverse RO proxies).

Insert Table 7 here

Table 7 reports the coefficient estimates from estimating (5.8) using our proxies for real

options. Not surprisingly, and consistent with the majority of the empirical papers, the co-

efficients on the market factor loading and on the log book-to-market are both significantly

positive, while the coefficients on log size are significantly negative in all specifications.

The coefficients on contemporaneous volume are positive and highly statistically signifi-

cant, consistent with Karpoff (1987) and Grullon, Lyandres, and Zhdanov (2010). The

coefficients for the past six month cumulative returns are insignificant and negative in all

specifications, and consistent with some specifications reported in Cooper, Huseyin, and

Schill (2008) and Grullon, Lyandres, and Zhdanov (2010).33

The table shows that there is a highly statistically significant positive volatility-return

relation in all specifications. In the first two columns of the top panel, in which firm size

– measured by firms’ equity market value and separately by total asset value – is used as

an inverse proxy for real options, the table shows that the estimates of γ2 are negative and

33Grullon, Lyandres, and Zhdanov show that the coefficient on past returns is sensitive to the set of
other independent factors included in Fama Macbeth regressions.
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highly statistically significant. In the third column, in which age is used as inverse proxy

for real options, the table shows that the estimate of γ2 is negative but not statistically

significant.

The table also reports the results when the categorical variables are used as proxies for

real option intensity. The estimate of γ2 for the high equity vega dummy is positive and

highly statistically significant. This result is interesting because equity vega is the only

proxy for real option intensity under consideration that is not necessarily related to the

firms’ future growth prospects. In specifications where real options are proxied by future

growth opportunities, measured by the high future investment or the high future sales

growth dummies, the table reveals that the relation between return and IV ol is stronger

for more real option intensive firms. The only exception occurs when the dummy for high

future profit growth is used, where the estimate is not statistically significant. However, the

table shows that when the high future profit growth dummy is combined with the small size

dummy, the estimate of γ2 is positive and highly statistically significant. The table reports

a similar pattern of stronger positive relation between returns and volatility if the high

future investment growth, the high future sales growth, or the high equity vega dummies

are combined with the small size dummy to form proxies of real option intensity. This

finding supports the view that combining more than one real option characteristic captures

real option intensity better, leading to more favorable results in line with the predictions

of our model.

The remainder of the table reports regression results using industry categorical variables

as proxies for real option intensity. The table shows that the estimates of the γ2 coeffi-

cient are positive when dummies for natural resources, high technology and bio technology

firms are used as proxies for real options, however only the dummy for natural resources

gives statistically significant results. The estimate when stocks that belong to any one of

the growth option industries is used is positive and highly statistically significant. One

explanation for why the γ2 estimates lack significance when some industry dummies are
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used is that industry membership alone may be imperfect proxies for real options since

firms within industries vary widely in their real option characteristics. In sum, the results

reported in Table 7 lend strong support to our model’s predictions.

Our model also shows that the positive volatility-return relation should be stronger for

more real option intensive firms and firms that experience larger jumps in volatility between

volatility regimes. We test this hypothesis in our second set of Fama and MacBeth (1973)

regressions. The regression model for the cross section of stocks for time period t is

rt − rf,t = γ0ι+ γ1∆IV ol + γ2∆IV olt + γ3∆IV ol ×∆IV ol ×RO + γ3Xt−1 + ηt (5.9)

where rt, rf,t, ι, ∆IV olt, ROt−1, Xt−1 and ∆IV ol are as defined previously. Our main

hypothesis is that the positive relation between stock returns and idiosyncratic return

volatility should be stronger for firms whose values incorporate more real options and firms

that experience larger volatility switches. Therefore, our hypothesis translates to tests that

γ3 > 0 (or γ3 < 0 for inverse RO proxies).

Insert Table 8 here

The results of estimating (5.9) are presented in Table 8. The table shows that the estimate

of γ1 is negative and highly statistically significant for all the regression specifications,

implying that the the premium for the jump size is negative in the cross section of stock

returns. In other words, stocks that experience larger jumps in IV ol between volatility

regimes on average earn lower stock returns. This finding is interesting and relates to

the IV ol puzzle of Ang, Hodrick, Xing, and Zhang (2006), an empirical puzzle that is

investigated in the context of our model in the next section. The table also shows that

the estimate of γ2 is positive and highly statistically significant for all specifications, in

agreement with the results in relation to the estimations of regression equation (5.8).

Table 8 shows that the estimates of γ3 are positive (negative for inverse real option
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proxies) and highly statistically significant for virtually all specifications using the different

real option proxies. The only exceptions are the coefficient estimates when age, the dummies

for young, small and young, and young and high vega are used as real option proxies, which

are not statistically significant. The remainder of the table reports regression results using

industry membership as proxies for real option intensity. The estimates of the γ3 coefficient

are positive for natural resources, high technology and bio technology firms, however only

natural resources is statistically significant. The estimate for all-growth industry is positive

and highly statistically significant.

Collectively, the results in Tables 7 and 8 lend strong support for our model’s predictions

on the positive IV ol anomaly.

5.4 The Poor Future Performance of High Idiosyncratic Volatil-

ity Stocks

Ang, Hodrick, Xing, and Zhang (2006) report that portfolios of high IV ol stocks signifi-

cantly under-perform their low IV ol counterparts on a risk-adjusted basis. Our model also

provides an explanation for this finding. Our model predicts that risk-adjusted returns

exhibit reversals in tandem with movements in firm-specific operating risks. If firm values

incorporate real options and firms are subject to changes in idiosyncratic operating risk,

then sorting and grouping stocks on month-end realized IV ol is akin to grouping stocks

on the firms’ most recent idiosyncratic operating volatility regime, and portfolios exhibit

differences in risk-adjusted returns. Our model further predicts that the negative IV ol

anomaly should be amplified for more real option intensive firms and firms that experience

more extreme changes in IV ol. We test these hypotheses and provide empirical support in

this section.

At each month-end we sort stocks into terciles ranked on IV ol. Then, independently,

at the end of each June, we separately sort stocks into three terciles on the basis of the

real option characteristics age, size (total assets) and size (market equity), and into two
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groups based on whether they have high equity vega, high future profit growth, high future

sales growth, high future investment rate, and whether they are young and small. Then we

form value-weighted portfolio returns for each of the two-way classifications and assess their

performance over the following month. This approach corresponds to the 1/0/1 (formation

period/waiting period/holding period) strategy of Ang, Hodrick, Xing, and Zhang (2006)

which most of their analysis is concentrated on.

The performance of the portfolios are assessed on a risk-adjusted basis relative to the

Fama and French 3 factor model. More specifically, we estimate the intercepts from running

time-series regressions of portfolio excess returns on the three Fama French factors (i.e.

market risk premium, size, and book-to-market)

rt − rf,t = γ0 + γ1MKTRFt + γ2SMBt + γ3HMLt + ϵt (5.10)

where rt is the portfolio return, rf,t is the monthly riskless rate,MKTRF , SMB, andHML

are the Fama and French (1993) three factors that proxy for the market risk premium, size

and book-to-market factors respectively. In order to investigate the extent to which real

option intensity contributes to the negative IV ol anomaly, we also estimate the alphas for

the zero-cost portfolios along each one of the real option intensity rank classifications. The

zero-cost (long-short) portfolio returns along a fixed rank classification are the returns of

the portfolio that is long the portfolio of the highest-ranked IV ol stocks and short the

portfolio of the lowest-ranked IV ol stocks. When estimating the alpha of the zero-cost

portfolios, we use portfolio returns instead of portfolio excess returns on the left hand side

of regression (5.10). All portfolios are rebalanced monthly.

Tables 9 to 11 report average portfolio alphas along with Newey West robust t-statistics

after doing two-way independent sorts on IV ol and the measure for real option intensity.

IV ol ranks are listed across columns with the long-short portfolio reported in the last

column, while real option ranks are listed down the rows. In order to facilitate interpretation
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of the economic significance, the reported portfolio alphas are annualized after multiplying

the intercept estimates by 12. All other reported statistics are unadjusted.

Insert Table 9 here

The first three panels of Table 9 show that the negative IV ol anomaly is more pronounced

and statistically more significant for the smaller two tercile groups when firm size is mea-

sured by total asset value. The negative IV ol anomaly for the largest tercile stocks is

not significant. A similar pattern is present for size portfolios, if size is measured by mar-

ket equity value, and age portfolios. The IV ol anomaly is not significant at the 5% level

for the largest and oldest tercile stocks, but large and significant for younger and smaller

stocks, results that are in agreement with our predictions. Table 9 also reports that the

relative poor performance of high IV ol stocks are more pronounced and statistically more

significant for the high vega firms than for the low vega firms. This finding is enlightening

because vega is the only proxy for real option intensity under consideration that is not

necessarily related to firms’ future growth opportunities.

Insert Table 10 here

More striking are the results in Table 10. The table shows that the negatrive IV ol anomaly

is even stronger and more significant for small and high equity vega firms than for high

equity vega firms alone. These results support the argument that firm values incorporate

real options other than future growth opportunities and that the negative IV ol anomaly

relates to those real options as well. The results also support the notion that the nega-

tive IV ol anomaly is stronger for stocks of firms that combine more than one real option

characteristic, perhaps because these firms have more real options. The other panels in the

table point to that conclusion as well. While the negative IV ol anomaly is not conclusively

stronger for high future profit, high future sale or high future investment growth firms as
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reported in Table 9, the anomaly is stronger and more significant for these firms if they are

also small in size. Similar results also hold for young firms and firms that are both young

and have high vega. In sum, the negative IV ol anomaly seems to be more pronounced for

more real option intensive firms, and for firms that are characterized by more than one real

option criteria.

Insert Table 11 here

Table 11 reports the strength of the negative IV ol anomaly across real option intensive

industries. The first two panels of the table show that the anomaly is more pronounced for

natural resources and high technology stocks. The difference in alphas between the high

IV ol and low IV ol portfolios is large and significant at the 5% level for natural resources

and high tech stocks, but lower and not significant at the 5% level for stocks that do not

belong to these industries. These results are in agreement with the predictions of our

model. However, the third panel of the table shows that the negative IV ol anomaly is not

significant among bio tech stocks, but significant for other stocks. The last panel shows

that the anomaly is statistically less significant for stocks with membership in any one of

the three growth option industries. From these results, we conclude that the evidence on

real option industry membership and the negative IV ol-anomaly is weakly in favor of the

predictions of our model. As mentioned earlier, industry membership alone may be weak

a proxy for real option intensity because firms within industries can vary widely in the

amount of real options they possess.

In order to investigate how the negative IV ol anomaly relates to the size of the changes

in IV ol, in addition to the two-way independent sorts discussed earlier, we also indepen-

dently sort and rank stocks on IV ol into terciles. Then we form long-short portfolios for

each two-way classification of the real option intensity criteria and ∆IV ol and assess their

performance over the following month relative to the Fama and French 3 factor model.

The first three panels of Table 12 show that the negative IV ol anomaly is monotonically

stronger and more significant for the higher ∆IV ol tercile than for the lower terciles if real
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option intensity is proxied by size and age. These results support our predictions that

the negative IV ol anomaly should be more pronounced for firms that experience more

extreme changes in IV ol. The table also shows that the negative IV ol anomaly is stronger

and highly statistically significant among the youngest firms and firms that have the largest

∆IV ol, which also support the predictions our model. However, the negative IV ol anomaly

seems to be more pronounced for larger firms among the top ∆IV ol tercile stocks. These

findings are not in direct support of our model. As inverse proxies for real options, our model

predicts that the negative IV ol anomaly should be stronger for smaller firms. However,

consistent with the predictions of our model, the anomaly remains both statistically and

economically significant for smaller firms.

If high future profit, high future sale or high future investment growth dummies are

used to categorize real option intensity, the main conclusions are similar. While the nega-

tive IV ol anomaly is stronger for the high ∆IV ol stocks independently of the real option

characteristics, the anomaly seems to be weaker for high future growth firms. The latter

is not in direct support of our model. One possible explanation for the weaker results for

high growth firms is that the negative IV ol anomaly may be confounded by the strong

positive stock returns of the firms with high future growth prospects. This is likely to be a

confounding factor that could weaken the negative IV ol anomaly to the extent that high

future growth correlates with high expected future earnings growth, and investors incor-

porate earnings growths expectations into stock returns during the portfolios’ evaluation

month.

Insert Table 13 here

While the negative IV ol anomaly does not seem stronger for high future growth stocks

within the high ∆IV ol stocks, Table 13 shows that the negative IV ol anomaly is stronger

for high growth firms that are also small. A similar pattern is present for the stocks of firms

that are small and young, and firms that are small and have a high vega. These results
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support the argument made previously that the anomaly is more pronounced for firms that

combine more than one real option characteristics.

Insert Table 14 here

Table 14 reports the strength of the anomaly for the different real option intensive industries

and ∆IV ol ranks. The table shows that the negative IV ol anomaly is monotonically

stronger and statistically more significant for larger ∆IV ol than for smaller ∆IV ol stocks

independently of industry membership, results that are consistent with our predictions. The

table also shows that the strength of the anomaly and its statistical significance correlates

with membership in natural resources, bio tech and all-growth industries, and firms that

have the larger ∆IV ol, results that are also in direct support of the predictions of our

model. The only industry membership working against the model’s predictions is the high

tech group, which exhibit a weaker anomaly than the low tech stocks within the high IV ol

group. Although the anomaly is not stronger among the high tech stocks, the anomaly still

remains both statistically and economically significant.

Overall, the results in tables 9 to 14 demonstrate that the relative poor performance of

high IV ol stocks is more pronounced for stocks of firms with characteristics that are more

likely to be related with real options and firms that experience more extreme changes in

IV ol, results in line with the predictions of our model.

6 Conclusions

Recent empirical evidences on the correspondence between stock returns and idiosyncratic

return volatility at the firm-level have been mixed at best. In this paper, we propose a

new economic explanation for the conflicting findings in a simple equity valuation model

of firms involving real options and stochastic operating risk. More generally, we motivate

why idiosyncratic risks may appear to be priced in the cross-section of stock returns.
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In this paper, we introduce a 2-regime Markov switching process for the idiosyncratic

volatility of the firms’ output price in order to incorporate uncertainty in operating risk.

The value of a real option is convex in the output price and its valuation does not distinguish

between systematic and idiosyncratic operating risks, a feature that contrasts starkly from

the valuation of the firm’s assets-in-place. We show that the value of a firm’s real options

relate positively with the volatility regime, giving rise to regime dependency of the firm’s

equity return and beta. The time-series dynamics of the realized and expected returns

induced by the volatility structure results in an interplay between risk-adjusted returns and

idiosyncratic return volatility consistent with what has been observed empirically in the

cross-section of stocks. We verify our intuition with numerical simulations, followed with

our own predictions and empirical tests. We find that the results are strongly supportive

of our model.

To maintain tractability, our model is devoid of a more general structure for the firms’

idiosyncratic operating risk. In the 2-regime structure, the operating volatility of a firm

leaps between the two values to generate the results aligned with the empirical obser-

vations. Qualitatively, our results should persist in a more general structure insofar as

idiosyncratic volatility exhibits mean-reversion. Work establishing this conjecture seems to

be an interesting extension of our paper.

A number of papers have reported that asset returns must exhibit heteroscedasticity

as well as discontinuous movements to fit their empirical distributions. Previously, the

literature has relied on liquidity and other microstructure related features to explain the

distributional properties of stock returns. Our model suggests that the distributional prop-

erties of stock returns stem from the operating environment that firms face. Our model

has the capability to parsimoniously generate skewness and fat tails in return distributions,

providing fertile grounds for additional research. Further research in this direction is highly

merited.

Lastly, we believe that our model imparts a new linkage between corporate investment
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environments and other stock return regularities. Our model suggests that jumps in stock

returns should coincide with large changes in idiosyncratic return volatility in predictable

ways, potentially shedding new insights on the three-way relation between stock returns,

idiosyncratic return volatility and idiosyncratic expected skewness as shown in Boyer, Mit-

ton, and Vorkink (2010). Additionally, the regime dependency and the time-series pattern

of the firm’s operating risk in our model help establish predictability akin to return contin-

uation amenable with the findings of Jegadeesh and Titman (1993), and reversals reported

in Jegadeesh (1990). We leave these other interesting extensions for future research.
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7 Appendix

This section describes the valuation approach used to value the assets of the firm, followed

by the proofs of the propositions stated Section 2 of the paper.

7.1 Valuation Approach

We derive the fundament differential equation that asset values must solve. It simplifies

valuation if we reexpress the dynamics of the price (2.1) more concisely by letting

dP

P
= µdt+ σidBi (7.1)

where dBi =
σP,idB1+σAdB2

σi
and σi =

√
σ2
P,i + σ2

A. Then it can be shown that Cov (dBi, dB2) =

σA

σi
dt, Cov

(
dP
P
, dS

S

)
= σSσAdt, and ρi =

σA

σi
.

Denote Y (P, σP,i) = Yi(P ) the value function of an asset that is twice-differentiable

in P where P follows the process in equation (7.1) and σP,i follows the process given by

equation (2.2). At this stage, Yi(P ) can be the value of a growth option. The generalized

Ito’s Lemma (Malliaris (1988)) implies that Yi(P ) has the following process

dYi(P )

Yi(P )
=

µPY ′
i (P ) + 1

2
P 2σ2

i Y
′′
i (P )

Yi(P )
dt+

σiPY ′
i (P )

Yi(P )
dBi +

(Yi′(P )− Yi(P ))

Yi(P )
dzi (7.2)

The first two terms on the right hand side of the equation are the standard form for Ito’s

Lemma. The third term is the jump of the value of Yi(P ) when σP,i switches from regime

i to regime i′. Equation (7.2) can be written as

dYi(P )

Yi(P )
= [µYi

(P )− λiγi(P )]dt+ σYi
(P )dBi + γi(P )dzi (7.3)
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where

µYi
(P ) =

[
µPY ′

i (P ) + 1
2
P 2σ2

i Y
′′
i (P )

Yi(P )

]
+ λiγi(P ) (7.4)

σYi
(P ) =

σiPY ′
i (P )

Yi(P )
(7.5)

γi(P ) =
Yi′(P )− Yi(P )

Yi(P )
(7.6)

Following Merton (1976), denote w1, w2 and w3 = 1−w1−w2 the proportion of portfolio

value invested in the market asset S, asset Yi(P ) and the riskless asset M respectively. The

instantaneous rate of return on the portfolio is given by

dW

W
= w1

dS

S
+ w2

dYi

Yi

+ (1− w1 − w2)rdt (7.7)

= [w1(µS − r) + w2(µYi
(P )− r) + r − w2λiγi(P )] dt (7.8)

+ w1σSdB2 + w2σYi
(P )dBi + w2γi(P )dzi

where we have substituted (7.3), (2.3) and (2.4) into (7.7) to arrive at (7.8). It is not

possible to make this portfolio riskless34, instead, we choose the portfolio weights w∗
1 and

w∗
2 to eliminate market risk only. In this case, the expected rate of return for the portfolio

equates to the risk free rate, r. This implies that

w∗
1(µS − r) + w∗

2(µYi
(P )− r) + r = r (7.9)

and

w∗
1σS + w∗

2σYi
(P )

σA

σi

= 0 (7.10)

where we have used the knowledge that dBi =
σP,idB1+σAdB2

σi
. After solving for w∗

1 and w∗
2,

34As in Merton (1976), the jump risk in the hedge portfolio is unhedgeable.
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equation (7.9) together with equation (7.10) implies that

σSµYi
(P ) = −rσAσYi

(P )

σi

+
σAµSσYi

(P )

σi

+ rσS (7.11)

Substituting equations (7.4) and (7.5) into (7.11), and simplifying gives the fundamental

valuation equation

1

2
P 2σ2

i Y
′′
i (P ) + (µ− σAλ)PY ′

i (P ) + λi′ (Yi′(P )− Yi(P )) = rYi(P ) (7.12)

where we have substituted in the market Sharpe ratio λ = µS−r
σS

. The differential equation

(7.12) serves as the backbone for the derivation of all valuations in Section II of the paper.35

7.2 Value of a Mature Firm

To value a mature firm, it requires only that we discount the operating cash flows under

the risk neutral measure Q, which implies

VM(P ) = EQ
[∫ ∞

0

e−rsξM(Pt+s − c)ds

]
(7.15)

35An alternative and more direct approach to deriving the valuation equation (7.12) for any asset Yi(P )
is based on Constantinides (1978). The first step in the approach calls for the replacement of the drift of
dS
S , µ, by µ∗ = µ − λCorr

(
dP
P , dS

S

)
σi = µ − λρiσi = µ − λσA. The second step evaluates the stream of

cash flows of Yi(P ) as if the market price of risk were zero, i.e., discount expected cash flows at the riskfree
rate. To this end, the Bellman equation for asset Yi is given by

Yi(P ) =
1

1 + r△t
E [Y (P +△P, σi +△σ)] (7.13)

The expectation on the right hand side evaluates to

E [Yi(P +△P )] = {λi′△tE [Yi′(P +△P )] + (1− λi′△t)E [Yi(P +△P )]} (7.14)

The first term is the asset’s probability weighted expected value if there is a switch in volatility regime and
the second term corresponds to the asset’s probability weighted expected value under the current volatility
regime. One can arrive at equation (7.12) after substituting equation (7.14) into (7.13), multiplying both
sides by 1 + r△t, letting △t go to zero, applying Ito’s Lemma, and substituting µ by µ∗. Looked another
way, the traded assetsM and S allow us to define a new measure under which the process dB∗

i = ρiλdt+dBi

is a brownian motion under the Q measure. Under this risk neutral measure, the price dynamics follows
dP
P = µ∗dt+ σidB

∗
i , where µ∗ = µ− σiρiλ = µ− σAλ.
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where EQ is the expectation under the Q measure. Evaluating the integral results in the

value function (2.5). In the valuation of the growth option, a similar function constitutes

the reward when a young firm invests I and increases production scale, with the exception

that ξM is substituted by ξ.

7.3 Value of a Growth Firm

Let Gi(P ) denote the value of a growth option in the region where P ∈ (P1, P2) and when

the volatility regime i is in effect. In this region of P values, the growth option is in-the-

money only if the low volatility regime is in effect, in which case is exercised immediately

and it’s payoff is

GL(P ) = ξ

(
P

r − µ∗ − c

r

)
− I (7.16)

Using valuation equation (7.12), the value of a growth option in the high volatility regime

obeys the following differential equation

1

2
P 2σ2

iG
′′
H(P ) + (µ− σAλ)PG′

H(P ) + λL

[
ξ

(
P

r − µ∗ − c

r

)
− I −GH(P )

]
= rGH(P )

(7.17)

Equation (7.17) is the standard valuation equation commonly seen in the growth option

literature with the exception of the last term. The last term corresponds to the probability

weighed change in the value of the option due to a change in regime from high to low and

immediate activation. The payoff from activation, net of investment cost I and opportunity

cost GH(P ), is
[
ξ
(

P
r−µ∗ − c

r

)
− I −GH(P )

]
.

Now we address the region of low values of P , i.e. P ∈ (0, P1). In this region the option

is out-of-the money in both volatility regimes and kept alive. Let Fi(P ) denote the value of

a growth option in the region where P ∈ (0, P1) and the i regime is in effect. Following the

same steps as above that led to the differential equation (7.17), we arrive at the following
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pair of differential equations

1

2
P 2σ2

HF
′′
H(P ) + (µ− σAλ)PF ′

H(P ) + λL (FL(P )− FH(P )) = rFH(P ) (7.18)

1

2
P 2σ2

LF
′′
L(P ) + (µ− σAλ)PF ′

L(P ) + λH (FH(P )− FL(P )) = rFL(P ) (7.19)

As before, the differential equations are similar to those in standard diffusion models

with the exception that they include an additional component that captures the possi-

bility of a change in the volatility regime of the decision variable P . This term equals

λL (FL(P )− FH(P )) if the high volatility state is in effect, and λH (FH(P )− FL(P )) oth-

erwise.

With this last pair of valuation equations, we have all the tools required for all the

valuations in the paper.

7.4 Proof of Proposition 1

The solution method follows Guo (2001) and Guo and Zhang (2004). Consider first the

system of differential equations composed of equations (7.18) and (7.19). It is easy to show

that the system has the following characteristic function

qH(β)× qL(β)− λLλH = 0 (7.20)

where qH(β) and qL(β) are given by the following quadratic equations

qH(β) = −βµ∗ − 1

2
(β − 1)βσ2

H + λL + r (7.21)

qL(β) = −βµ∗ − 1

2
(β − 1)βσ2

L + λH + r (7.22)
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The characteristic function has four distinct roots36 β2,1 > β2,2 > 0 > β2,3 > β2,4 (Guo

(2001)) such that the general form of the solutions to (7.18) and (7.19) are given by

FH(P ) =
4∑

i=1

BH,i(P )P β2,i and FL(P ) =
4∑

i=1

BL,i(P )P β2,i

The valuation problem is greatly simplified if we reduce the number of terms in the general

solutions. Given the signs of β2,1, β2,2, β2,3, and β2,4, and the property that the option value

must approach zero if P approaches zero, the constants multiplying the negative powers of

P must be zero. Therefore, the solutions take the simplified form given by

FH(P ) = BH,1P
β2,1 +BH,2P

β2,2 (7.23)

FL(P ) = BL,1P
β2,1 +BL,1P

β2,2 (7.24)

Substituting equations (7.23) and (7.24) into the differential equations (7.18) and (7.19)

results in the following equations

0 = P β2,1 (λLBL,1 − qH(β2,1)BH,1) + P β2,2 (λLBL,2 − qH(β2,2)BH,2)

0 = P β2,1 (λHBH,1 − qL(β2,1)BL,1) + P β2,2 (λHBH,2 − qL(β2,2)BL,2)

The next step involves solving for the unknown constants. Equation (3.1) in the proposition

is found by solving for BH,1 and BH,2 and substituting into FH(P ).

Now turning out attention to equation (7.17), the solution has the following form

GH(P ) = CH,1P
β1,1 + CH,2P

β1,2 + ϕ(P ) (7.25)

where CH,1 and CH,2 are constants of integration, ϕ(P ) is a particular solution and β1,1 and

36The roots of quartic equations can be found in standard math textbooks.

55



β1,2 are the two real roots of the following quadratic equation

qH(β) = −βµ∗ − 1

2
(β − 1)βσ2

H + λL + r

In particular, if qH(0) = r + λL ̸= 0 one can choose

ϕ(P ) =
λL

λL + r

(
ξ

(
P

r − µ∗ − c

r

)
− I

)
(7.26)

and the complete solution is given by (3.3) in the proposition.

It remains to determine the constants of integration BL,1, BL,2, CH,1, CH,2, and the

exercise policies P1 and P2. To complete the solution, we make use of the following boundary

conditions

H(P1)− I = FL(P1) (7.27)

H ′(P )|P=P1
= F ′

L(P )|P=P1
(7.28)

H(P2)− I = GH(P2) (7.29)

H ′(P )|P=P2
= G′

H(P )|P=P2
(7.30)

GH(P1) = FH(P1) (7.31)

G′
H(P )|P=P1

= F ′
H(P )|P=P1

(7.32)

where H(P ) = ξ
(

P
r−µ∗ − c

r

)
. The value matching conditions (7.27) and (7.29) impose an

equality between the option’s intrinsic value and the option’s value at the optimal exercise

values of P in the two volatility regimes. These conditions merely mean that upon activation

the owner foregoes the value of the option in exchange for the net benefits of exercising the

option, H(P )− I. The smooth pasting conditions (7.28) and (7.30) ensure the optimality

of the exercise policies P1 and P2 (Dixit and Pindyck (1994)). Lastly, the conditions (7.31)

and (7.32) ensure that the value of the option is continuous and smooth around P1.

We turn to each of the conditions (7.27)–(7.32) above. At P = P1 the value matching
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condition is given by H(P1) − I = FL(P1) and the smooth pasting condition is given by

H ′(P )|P=P1
= F ′

L(P )|P=P1
. More explicitly, the two conditions (7.27) and (7.28) can be

written as

ξ

(
P1

r − µ∗ − c

r

)
− I = BL,1P

β2,1

1 +BL,2P
β2,2

1 (7.33)

ξP1

r − µ∗ = β2,1BL,1P
β2,1

1 + β2,2BL,2P
β2,2

1 (7.34)

At P = P2 the value matching condition is given by H(P2) − I = GH(P2) and the

smooth pasting condition is given by H ′(P )|P=P2
= G′

H(P )|P=P2
. More explicitly, the two

conditions (7.29) and (7.30) can be written as

ξ

(
P2

r − µ∗ − c

r

)
− I = CH,1P

β1,1

2 + CH,2P
β1,2

2 +
λL

λL + r

(
ξ

(
P2

r − µ∗ − c

r

)
− I

)
(7.35)

ξP2

r − µ∗ = β1,1CH,1P
β1,1

2 + β1,2CH,2P
β1,2

2 +
λL

λL + r

(
ξP2

r − µ∗

)
(7.36)

We can use the first four conditions (7.33)–(7.36) to solve for BL,1, BL,2, CH,1 and CH,2.

The expressions in closed form are

BL,1 = −P
−β2,1

1

(
β2,2

β2,1 − β2,2

)ξP1

(
1− 1

β2,2

)
(r − µ∗)

− ξc

r
− I

 (7.37)

BL,2 = P
−β2,2

1

(
β2,1

β2,1 − β2,2

)ξP1

(
1− 1

β2,1

)
(r − µ∗)

− ξc

r
− I

 (7.38)

CH,1 = −P
−β1,1

2

(
β1,2

β1,1 − β1,2

)ξP2

(
1− 1

β1,2

)
(r − µ∗)

− ξc

r
− I

 (7.39)

CH,2 = P
−β1,2

2

(
β1,1

β1,1 − β1,2

)ξP2

(
1− 1

β1,1

)
(r − µ∗)

− ξc

r
− I

 (7.40)

(7.41)

57



Continuity and smoothness of the value functions at P = P1 requires that FH(P1) =

GH(P1) and F ′
H(P )|P=P1

= G′
H(P )|P=P1

. These conditions are the equation (3.5) and (3.6)

in the proposition.

Conditions (3.5) and (3.6) and the constants of integration BL,1, BL,2, CH,1 and CH,2

are expressed in terms of the exercise boundaries P1 and P2. Therefore, the equations

compose a system of two equations and two unknowns variables, P1 and P2, which are

solved numerically for each set of parameters of the model. This completes the proof of

Proposition 1 of the paper.

To implement the solution of the model, it is required to only determine the values of

P1 and P2 numerically for any reasonable set of parameter values.

7.5 Proof of Proposition 2

Direct application of Ito’s Lemma on FH(P ) and FL(P ) results in equation (3.7) where

aH(P ) =

(
1

2
σ2
HP

2F ′′
H(P ) + µPF ′

H(P )

)/
FH(P ) (7.42)

bH(P ) = σHPF ′
H(P )/FH(P ) (7.43)

aL(P ) =

(
1

2
σ2
LP

2F ′′
L(P ) + αPF ′

L(P )

)/
FL(P ) (7.44)

bL(P ) = σLPFL(P )/FL(P ) (7.45)

νH(P ) = (FL(P )− FH(P ))/FH(P ) (7.46)

νL(P ) = (FH(P )− FL(P ))/FL(P ) (7.47)

Substituting in the value functions (3.1) and (3.2) and their derivatives into expressions

(7.42) to (7.47) results in
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aH(P ) =

β2,1BL,1P
β2,1qL(β2,1)

(
1
2
(β2,1 − 1)σ2

H + µ
)
+ β2,2BL,2P

β2,2qL(β2,2)
(
1
2
(β2,2 − 1)σ2

H + µ
)

BL,1P β2,1qL(β2,1) +BL,2P β2,2qL(β2,2)

(7.48)

bH(P ) =
σH

(
β2,1BL,1P

β2,1qL(β2,1) + β2,2BL,2P
β2,2qL(β2,2)

)
BL,1P β2,1qL(β2,1) +BL,2P β2,2qL(β2,2)

(7.49)

νH(P ) =
BL,1P

β2,1 (λH − qL(β2,1)) +BL,2P
β2,2 (λH − qL(β2,2))

BL,1P β2,1qL(β2,1) +BL,2P β2,2qL(β2,2)
(7.50)

aL(P ) =
β2,1BL,1P

β2,1
(
1
2
(β2,1 − 1)σ2

L + µ
)
+ β2,2BL,2P

β2,2
(
1
2
(β2,2 − 1)σ2

L + µ
)

BL,1P β2,1 +BL,2P β2,2
(7.51)

bL(P ) =
σL

(
β2,1BL,1P

β2,1 + β2,2BL,2P
β2,2

)
BL,1P β2,1 +BL,2P β2,2

(7.52)

νL(P ) =
BL,1P

β2,1 (qL(β2,1)− λH) +BL,2P
β2,2 (qL(β2,2)− λH)

λH (BL,1P β2,1 +BL,2P β2,2)
(7.53)

The dynamics for GH(P ), VM(P ) and the assets-in-place of young firms are omitted

but they can be derived in the same way.

The conditional CAPM beta can be found by forming a replicating portfolio with state

dependent and time varying weights in the traded assets S and M that exactly reproduces

the systematic risk of the option.37 The proportion of portfolio value held in S determines

the beta of the option. To this end, take equation (7.2) and substitute in dBi =
σP,idB1+σAdB2

σi

and Yi(P ) = Fi(P ). By inspection we can see that the diffusion term of the common

risk factor can be eliminated by holding
F ′
i (P )σAP

σSS
units of the stock in the hedge portfolio.

Multiplying the number of stocks by S and dividing by the portfolio value Fi(P ), we get the

weight of the hedge portfolio invested in the tradeable asset. Since the tradeable asset has

a beta of one, the beta of the growth option is given by βF,i(P ) = Fi(P )′σAP
σSS

S
Fi(P )

=
F ′
i (P )σAP

σSFi(P )
.

37Alternatively, one can find the conditional CAPM beta by computing the option’s return elasticity

with respect to the returns of the tradeable asset. The elasticity is Cov[dFi/Fi,dS/S]
Var[dS/S] =

σF,iσA

σiσS
. Substituting in

(7.5), Fi(P ) from equations (3.1) and (3.2), and their derivative gives (7.54) and (7.55). There is yet a third
approach as shown in Sagi and Seashole (2007) to compute the CAPM beta. Sagi and Seashole show that

the expected excess return is given by (µ− µ∗) ∂logFi(P )
∂logP = (µ− µ∗)

F ′
i (P )

Fi(P ) where (µ− µ∗) is the difference

between the unadjusted and risk-adjusted mean returns of P . In our set up, (µ − µ∗) = ρiσiλ = σAλ.
Substituting in Fi(P ) from equations (3.1) and (3.2), and dividing by σSλ results in (7.54) and (7.55).
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Substituting in Fi(P ) from equations (3.1) and (3.2) and their derivative gives

βF,H(P ) =
σA

σS

[
β2,1BL,1P

β2,1qL(β2,1) + β2,2BL,2P
β2,2qL(β2,2)

BL,1P β2,1qL(β2,1) +BL,2P β2,2qL(β2,2)

]
(7.54)

βF,L(P ) =
σA

σS

[
β2,1BL,1P

β2,1 + β2,2BL,2P
β2,2)

BL,1P β2,1 +BL,2P β2,2)

]
(7.55)

The beta of GH(P ), VM(P ) and the assets-in-place of young firms can be derived in the

same way. The beta of GH(P ) is

βG,H(P ) =
σA

(
β1,1CH,1P

β1,1 + β1,2CH,2P
β1,2 + ξPλL

(r−µ∗)(λL+r)

)
σS

(
CH,1P β1,1 + CH,2P β1,2 +

λL( ξP
r−µ∗− cξ

r
−I)

λL+r

) (7.56)

and the beta of the mature firm and the assets-in-place of young firms is

βM = βassets-in-place =
σAPr

σS (Pr + c(µ∗ − r))
(7.57)

The proof for expression (3.11) follows immediately from the expressions for βi(P ), bi(P )

and νi(P ). Expression (3.11) is consistent with the expected return given by the CAPM.

To show this, substitute in (7.49), (7.52), (7.50) and (7.53) into the right hand side of

(eq:abret) for i = H and i = L. The resulting expressions equate to the expressions from

substituting (7.54) and (7.55) into the left hand side of (eq:abret) and simplifying.

The proofs for (3.8), (3.9), (3.10) and βCAPM
H (P ) < βCAPM

L (P ) are trivial and merely

rely on the knowledge that β2,1 > β2,2 and P < P1 if the investment option has not been

extinguished.

This completes the proof.
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Table 1: Model Inputs. This table reports the parameter values used to solve and simulate the real option/stochastic
idiosyncratic volatility model developed in Section 3. Base case parameter values are distinguished with an asterisk ∗ if more
than one value is reported for a variable.

Model Parameters
Price Dynamics Variable Description Values
σP,H Output price idiosyncratic volatility in the high regime 0.3,0.4,0.5*
σP,L Output price idiosyncratic volatility in the low regime 0.1*,.02,0.3
λH Transition parameter from low volatility regime to high volatility regime 0.1
λL Transition parameter from high volatility regime to low volatility regime 0.1
µ Drift of output price process 0.04
σA Market volatility of output price process 0.15
Market Variable Description Values
r Riskless rate 0.05
µS Drift of tradeable asset (Market) 0.1
σS Diffusion of tradeable asset (Market) 0.25
Firm’s Profit Function Variable Description Values
c Variable cost per unit of output 10
ξY Production scale for young Firms 1
ξ Difference in production scale between mature and young Firms 1.1

I Investment cost of young firm to become mature
1.5×(ξ−1)×c

r−µ∗

Simulations Variable Description Values
N Number of samples 100
n Number of firms in each sample 2500
T Number of years 50
nt Number of months in each year 12
λexit Exit parameter for mature firms 0.01

Table 2: Simulation Results. The table reports coefficient estimates along with their t-statistics for the regression
model ret = γ0,tι + γ1,t∆σP,t + ηt in the first column of panels (a), (b) and (c), and estimates for the regression model
ret = γ0,tι + γ1,tσP,t−1 + ηt in the second column of panels (a), (b) and (c) using equity return data simulated from the
real option/stochastic idiosyncratic volatility model developed in Section 3 of the paper. Panels (a), (b) and (c) report
separate model estimates corresponding to the simulated samples where σP,H = 0.5,σP,L = 0.1, σP,H = 0.4,σP,L = 0.2 and
σP,H = σP,L = 0.3 respectively. T-statistics are reported in square brackets.

(a) σP,H = 0.5,σP,L = 0.1 (b) σP,H = 0.4,σP,L = 0.2 (c) σP,H = 0.3,σP,L = 0.3

Intercept 0.0346 0.0346 −0.0059 0.0030 −0.0063∗∗∗ −0.0098∗∗∗

[1.6031] [1.6031] [-1.8594] [0.4584] [-2.2178] [-4.9173]
∆σP,t 0.1073∗∗∗ 0.0882∗∗∗ 0.0008

[23.6857] [8.2872] [0.5774]
σP,t−1 −0.0542∗∗∗ −0.0170∗∗∗ 0.0071

[-2.4840] [-2.5375] [1.2149]
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Table 4: This table reports summary statistics for excess stock returns, return volatilities IV ol, month-to-month changes
in IV ol, or ∆IV ol, and proxies for firms’ real option intensity. Stock return data are from CRSP. The sample period is from
January, 1971 to December, 2010 for all market based variables. All our accounting variables are from annual COMPUSTAT
files. Utilities (SIC codes between 4900 and 4999) and financials (SIC codes between 6000 and 6999) are excluded. A stock’s
excess returns is the difference between its monthly stock return and the risk-free rate. Volatility and its change refer to
monthly volatility of log daily risk-adjusted returns where risk-adjustment is based on the Fama and French 3-factor model.
Market equity and total assets are in millions of dollars. Age is in months since first appearance in monthly CRSP files.
Future investment, profit and sales growth are the sum of the growth rates from year t + 2 to t + 5 of firms’ investments in
property plant and equipment, of firm’s operating profits, and of firms’ sales, respectively. vega is computed for each firm
according to (5.3) in the paper.

market variables Mean StdDev P5 Median P95 N
excess return 0.009976 0.180828 -0.22309 -0.0041 0.272627 1041266
IV ol 0.029476 0.024979 0.0079 0.022782 0.072884 1038601
∆IV ol -2.3E-05 0.021096 -0.02552 -0.00011 0.026111 1035935

Real Option variables Mean StdDev P5 Median P95 N
log(market equity) 4.694734 2.106019 1.5389081 4.521163 8.389149 1040478
log(total assets) 4.804593 2.009753 1.789757 4.62188 8.352702 1041266
log(age) 3.953142 1.540425 0 4.290459 5.746203 1041266
investment growth 0.996235 18.22423 -0.64226 0.225036 2.237907 871778
profit growth -0.55037 80.99137 -6.71653 0.353252 4.689659 871779
sales growth 1.579677 79.57993 -0.46927 0.29381 1.83045 868519
vega 2.84E-69 1.49E-67 9.63E-110 9.89E-81 1.88E-70 1041104
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Table 9: The table reports Fama and French (1993) alphas along with robust Newey and West (1987) t-statistics in
square brackets for the portfolios of stocks sorted by idiosyncratic return volatility IV ol and real option measures. IV ol
terciles are reported across the columns. Real option classifications are reported down the rows. The column labeled ’3-1’
refers to FF-3 alphas for the portfolios that are long and short the top and bottom tercile IV ol portfolios respectively within
each classification of real option. Idiosyncratic return volatility is computed relative to FF-3. We use daily data over the
previous month and rebalance monthly. We sort stocks into three portfolios sorted by idiosyncratic return volatility relative
to the FF-3 model. Then, independently, at the end of each June, we sort stocks into three tercile on the basis of the real
option characteristics age, size (total assets) and size (mkt equity), and into high/low vega, high/low future profit growth,
high/low future sales growth, young/old, high/low future investment rate based on 33th/66th NYSE breakpoints. The row
labeled ’Mean’ corresponds to the FF-3 alpha for the portfolio equally-weighted in the real option portfolios within each IV ol
classification. All portfolios of stocks are value-weighted and rebalanced monthly.

Ivol Rank

RO Proxy RO Proxy Rank 1 2 3 3-1

size (total assets) 1 4.0975** 4.0300** -6.5365*** -10.6340***
[2.4911] [1.9908] [-2.8647] [-4.3472]

2 4.1199*** 2.5739* -5.4489*** -9.5688***
[4.0848] [1.8638] [-2.7191] [-4.1640]

3 1.1176** 1.0809 -3.3977 -4.5153
[1.9880] [0.7594] [-1.0931] [-1.4095]

Mean 3.1117*** 2.5616** -5.1277** -8.2394***
[3.9365] [2.1641] [-2.5398] [-3.7403]

size (mkt equity) 1 3.4891** 7.1679*** -1.4118 -4.9009**
[2.1164] [4.2677] [-0.6068] [-2.0704]

2 2.0518** 2.4464*** -5.7961*** -7.8479***
[2.2206] [2.6878] [-3.0515] [-3.3100]

3 1.1703** 1.1891 -4.3537 -5.5241*
[2.0816] [0.8592] [-1.5122] [-1.8321]

Mean 2.2371*** 3.6012*** -3.8539** -6.0910***
[2.7423] [3.7955] [-1.9974] [-2.7314]

age 1 0.7141 1.4974 -5.4860** -6.2001**
[0.5620] [0.8703] [-2.0730] [-2.2095]

2 0.0977 2.2573 -6.8932*** -7.0886***
[0.0690] [1.1694] [-2.9674] [-3.0333]

3 0.2338 1.0879 -1.3004 -0.999
[0.1729] [0.7286] [-0.4450] [-0.3091]

Mean 0.4196 1.6689 -4.5701** -4.9897**
[0.5937] [1.3031] [-2.1691] [-2.2072]

high vega 0 1.4045** 2.0348* -2.361 -3.7655*
[2.2822] [1.7913] [-1.1747] [-1.6816]

1 -1.1113 -2.3174 -10.4032*** -9.2920***
[-0.7644] [-1.2174] [-3.6044] [-2.9722]

Mean 0.1466 -0.1413 -6.3821*** -6.5287***
[0.1741] [-0.1068] [-2.9884] [-2.7877]

high profit 0 0.9203 -0.3679 -3.9303 -4.8505*
[1.3045] [-0.3151] [-1.6076] [-1.8132]

1 2.1091* 2.2445 -2.0649 -4.1739
[1.8580] [1.1791] [-0.7984] [-1.5930]

Mean 1.5147** 0.9383 -2.9976 -4.5122*
[2.3362] [0.7270] [-1.2911] [-1.8501]

high sale 0 0.5376 -2.7208** -8.0188*** -8.5564***
[0.7579] [-2.2648] [-3.3133] [-3.3929]

1 4.8059*** 6.1847*** 2.9237 -1.8821
[3.9921] [3.2661] [1.0957] [-0.6379]

Mean 2.6718*** 1.732 -2.5475 -5.2193**
[3.9133] [1.3646] [-1.0939] [-2.0502]

high inv 0 -1.6825** -5.2831*** -11.3864*** -9.7039***
[-2.3719] [-3.9863] [-4.4539] [-3.5168]

1 8.6144*** 10.8817*** 8.8514*** 0.237
[9.5657] [6.3204] [3.5488] [0.0895]

Mean 3.4659*** 2.7993** -1.2675 -4.7334**
[5.8032] [2.2492] [-0.5834] [-2.0071]

68



Table 10: The table reports Fama and French (1993) alphas along with robust Newey and West (1987) t-statistics in
square brackets for the portfolios of stocks sorted by idiosyncratic return volatility IV ol and real option measures. IV ol
terciles are reported across the columns. Real option classifications are reported down the rows. The column labeled ’3-1’
refers to FF-3 alphas for the portfolios that are long and short the top and bottom tercile IV ol portfolios respectively within
each classification of real option. Idiosyncratic return volatility is computed relative to FF-3. We use daily data over the
previous month and rebalance monthly. We sort stocks into three portfolios sorted by idiosyncratic return volatility relative
to the FF-3 model. Then, independently, at the end of each June, we sort stocks into three tercile on the basis of the real
option characteristics age, size (total assets) and size (mkt equity), and into high/low vega, high/low future profit growth,
high/low future sales growth, young/old, high/low future investment rate based on 33th/66th NYSE breakpoints. The row
labeled ’Mean’ corresponds to the FF-3 alpha for the portfolio equally-weighted in the real option portfolios within each IV ol
classification. All portfolios of stocks are value-weighted and rebalanced monthly.

Ivol Rank

RO Industry RO Industry dummy 1 2 3 3-1

young 0 1.3132 1.1363 -3.6190* -4.9322**
[1.2116] [0.6678] [-1.7697] [-2.1477]

1 0.4351 -0.1468 -7.3830*** -7.8181***
[0.3662] [-0.0634] [-2.7331] [-2.9091]

Mean 0.8742 0.4948 -5.5010*** -6.3752***
[1.0866] [0.3128] [-2.6674] [-2.8934]

small 0 1.3118** 1.443 -4.1226** -5.4345**
high vega [2.2125] [1.2015] [-2.0369] [-2.4447]

1 7.2256*** -1.3516 -9.4742*** -16.6999***
[3.1348] [-0.5017] [-2.7450] [-5.1945]

Mean 4.2687*** 0.0457 -6.7984*** -11.0672***
[3.5833] [0.0289] [-3.0578] [-5.0682]

small 0 1.3399** 1.1866 -3.5023 -4.8422**
growth [2.3010] [0.9753] [-1.5847] [-2.0239]

1 2.622 -1.3573 -17.2875*** -19.9095***
[1.2730] [-0.4825] [-5.9209] [-7.4748]

Mean 1.9809* -0.0854 -10.3949*** -12.3758***
[1.8978] [-0.0533] [-4.8105] [-5.8970]

small 0 1.1321* 0.9205 -4.8299** -5.9620***
high profit [1.9005] [0.7740] [-2.2867] [-2.6013]

1 6.6400*** 5.1844 -5.9994 -12.6394***
[3.2080] [1.5296] [-1.4277] [-3.1488]

Mean 3.8861*** 3.0525 -5.4146* -9.3007***
[3.5113] [1.6193] [-1.9624] [-3.4349]

small 0 1.1484* 0.8917 -4.9013** -6.0497**
high sale [1.8996] [0.7600] [-2.2452] [-2.5556]

1 6.9615*** 7.2097*** -4.2678 -11.2293***
[3.5611] [2.6765] [-1.1800] [-3.1720]

Mean 4.0549*** 4.0507*** -4.5846* -8.6395***
[3.9697] [2.6368] [-1.9041] [-3.5687]

small 0 1.3810** 1.2084 -3.6206* -5.0016**
young [2.3321] [1.0050] [-1.7557] [-2.2157]

1 3.2628 -0.4925 -12.5558*** -15.8186***
[1.4685] [-0.2145] [-3.7289] [-5.5878]

Mean 2.3219** 0.358 -8.0882*** -10.4101***
[2.0742] [0.2500] [-3.4986] [-5.0069]

small 0 1.0777* 0.8581 -5.3113** -6.3890***
high inv [1.7810] [0.7173] [-2.4564] [-2.7210]

1 13.4407*** 15.6392*** -0.1405 -13.5812***
[6.5670] [4.2039] [-0.0450] [-4.3761]

Mean 7.2592*** 8.2486*** -2.7259 -9.9851***
[6.8613] [3.9692] [-1.2189] [-4.5802]

young 0 1.2383** 1.8331 -3.2394 -4.4778*
high vega [2.1660] [1.4618] [-1.5166] [-1.9169]

1 -2.2457 -1.7817 -11.4735*** -9.2278***
[-1.0604] [-0.6608] [-3.4854] [-2.6007]

Mean -0.5037 0.0257 -7.3565*** -6.8528***
[-0.4390] [0.0147] [-3.2038] [-2.8329]69



Table 11: The table reports Fama and French (1993) alphas along with robust Newey and West (1987) t-statistics in
square brackets of the portfolios of stocks sorted on idiosyncratic return volatility IV ol and real option proxies. IV ol Ranks
are reported across the columns and the ranks of the real option proxies are reported down the rows. The column labeled
’3-1’ refers to FF-3 alphas of the portfolios that are long and short the top and bottom IV ol portfolios respectively within
each rank of the real option proxy. Idiosyncratic return volatility is computed relative to FF-3. We use daily data over
the previous month and rebalance monthly. We sort stocks into three portfolios sorted by idiosyncratic volatility relative to
the FF-3 model. Then, independently, at the end of each June, we sort stocks into whether they belonged to the Natural
Resources, High Technology, and Bio Technology industries, and whether they belonged to any one of the three industries
(All G.O. Industries) on the basis of Fama and French (1997) industry classifications. The row labeled ’Mean’ corresponds to
the FF-3 alpha for the portfolio equally weighted in the industry sorted portfolios within each IV ol rank group. All portfolios
are value weighted.

Zero-Cost IV ol Portfolio Intercepts

RO Proxy size age small small small All Growth
Rank (total assets) young high inv. high vega Industries

1 -10.6340*** -6.2001**
[-4.3472] [-2.2095]

2 (0) -9.5688*** -7.0886*** -4.8422** -6.3890*** -5.4345** -5.4061***
[-4.1640] [-3.0333] [-2.0239] [-2.7210] [-2.4447] [-2.9169]

3 (1) -4.5153 -0.999 -19.9095*** -13.5812*** -16.6999*** -5.8266*
[-1.4095] [-0.3091] [-7.4748] [-4.3761] [-5.1945] [-1.8956]

Mean -8.2394*** -4.9897** -12.3758*** -9.9851*** -11.0672*** -5.6163***
[-3.7403] [-2.2072] [-5.8970] [-4.5802] [-5.0682] [-2.7146]
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Table 12: The table reports Fama and French (1993) alphas, along with robust Newey and West (1987) t-statistics in
square brackets, of the portfolios that are long and short the top and bottom tercile IV ol portfolios respectively within each
classification of real option and difference in IV ol values between the high and low regimes, ∆IV ol. The columns labeled
’Mean(1 to 3)’ and ’Mean(0 to 1)’ correspond to the FF-3 alpha for the equally-weighted portfolio in the real option sorted
portfolios within each classification of ∆IV ol. Idiosyncratic volatility is computed relative to FF-3. All portfolios are value-
weighted. We use daily data over the previous month and rebalance monthly. We sort stocks by idiosyncratic volatility
relative to the FF-3 model into three portfolios. At the end of each June, we independently sort stocks into three terciles on
the basis of their real option characteristics age, size (total assets) and size (mkt equity), and into high/low vega, high/low
future profit growth, high/low future sales growth, young/old, high/low future investment rate based on 33th/66th NYSE
breakpoints. Independent sorts of ∆IV ol are done once using in-sample values of IV ol for each stock and then grouping
stocks on the basis of the 33th/66th NYSE ∆IV ol breakpoint values.

RO Proxy Rank

RO Proxy ∆Ivol Rank 1 2 3 Mean(1 to 3)

size (total assets) 1 1.2953 1.9408 -1.7919 0.4814
[0.7783] [0.9964] [-0.8756] [0.3398]

2 -1.1459 -5.6068** -5.9637** -4.2388**
[-0.3936] [-2.1743] [-2.0455] [-2.0982]

3 -9.1933** -16.1224*** -14.8518*** -13.3892***
[-2.5293] [-5.0924] [-3.6702] [-4.9292]

size (mkt equity) 1 -0.1546 0.8774 -0.7373 -0.0048
[-0.1097] [0.6937] [-0.3732] [-0.0040]

2 0.6286 0.2541 -6.2849** -1.8008
[0.2874] [0.1028] [-2.2975] [-1.0100]

3 -6.3840** -12.7608*** -19.9126*** -13.0192***
[-2.0049] [-4.3610] [-5.4313] [-5.0374]

age 1 1.1583 -2.4428 -3.479 -0.2096
[0.4656] [-0.8672] [-1.6132] [-0.1219]

2 0.5376 -9.0395*** -3.8205 -3.8516*
[0.1828] [-3.0131] [-1.1623] [-1.9194]

3 -13.2842*** -9.7927** -10.4336** -11.6222***
[-3.2330] [-2.5055] [-2.3812] [-3.8341]

RO Proxy Rank

RO Proxy ∆Ivol Rank 0 1 Mean(0 to 1)

high vega 1 0.147 -8.1421 -3.2983
[0.0618] [-1.3157] [-0.9137]

2 -3.505 -5.6724 -4.5887*
[-1.4618] [-1.4065] [-1.9547]

3 -6.8298* -5.0545 -5.9422*
[-1.9367] [-1.2537] [-1.8772]

high profit 1 -0.943 -7.1614 -3.9736
[-0.3316] [-1.5875] [-1.3484]

2 -1.9006 1.2129 -0.3438
[-0.6468] [0.3879] [-0.1404]

3 -12.9659*** 1.8703 -5.5478
[-3.1592] [0.4470] [-1.6406]

high sale 1 -5.8249** 3.3435 -1.2823
[-1.9994] [0.6184] [-0.3764]

2 -1.9143 -1.607 -1.7606
[-0.6081] [-0.5251] [-0.7201]

3 -12.3146*** -2.904 -7.6093**
[-2.7325] [-0.7771] [-2.2865]

high inv 1 -6.8576** 2.6811 -2.2096
[-2.0994] [0.6673] [-0.7627]

2 -4.5404 0.7809 -1.8797
[-1.5994] [0.2560] [-0.8361]

3 -9.8621** -4.5532 -7.2076**
[-2.3589] [-1.1472] [-2.2730]
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Table 13: The table reports Fama and French (1993) alphas, along with robust Newey and West (1987) t-statistics in
square brackets, of the portfolios that are long and short the top and bottom IV ol portfolios respectively within each rank of
the real option proxy and difference in IV ol values between the high and low regimes, ∆IV ol. The column labeled ’Mean(0
to 1)’ corresponds to the FF-3 alpha for the portfolio equally weighted in the real option proxy sorted portfolios within each
∆IV ol rank group. Idiosyncratic volatility is computed relative to FF-3. All portfolios are value weighted. We use daily data
over the previous month and rebalance monthly. We sort stocks into three portfolios sorted on idiosyncratic volatility relative
to the FF-3 model. At the end of each June, we independently sort stocks on the basis of the real option characteristics
age and size (total assets), and into high/low vega, high/low future profit growth, high/low future sales growth, young/old,
high/low future investment rate based on 33th/66th NYSE breakpoints. Independent sorts of ∆IV ol are done once using
in-sample values of IV ol for each stock and then grouping stocks on the basis of the 33th/66th NYSE ∆IV ol breakpoint
values.

RO Proxy Rank

RO Proxy ∆Ivol Rank 0 1 Mean(0 to 1)

young 1 -2.6092 1.1289 -1.1093
[-0.9174] [0.2094] [-0.3338]

2 -5.2328** -1.3772 -3.3045
[-1.9887] [-0.4292] [-1.4599]

3 -8.4579** -8.0120** -8.6963***
[-2.3154] [-2.2161] [-3.2494]

small 1 -2.4541 -27.9701* -9.3070**
high vega [-1.0159] [-1.8613] [-2.5311]

2 -2.187 -25.0583*** -13.5731***
[-0.9645] [-3.7224] [-3.7903]

3 -9.4226*** -12.0750*** -10.7488***
[-2.7477] [-3.3645] [-3.7550]

small 1 -1.2082 4.5421 -0.8958
growth [-0.4787] [0.5815] [-0.2379]

2 -3.1672 -11.2681*** -7.2177***
[-1.2881] [-2.6043] [-2.8752]

3 -7.5165** -16.2439*** -11.8802***
[-1.9739] [-5.2359] [-4.4760]

small 1 -3.5166 -4.1494 -11.5094***
high profit [-1.3669] [-0.4946] [-3.2741]

2 -2.8234 -7.9637 -5.3935*
[-1.1582] [-1.3867] [-1.7095]

3 -6.7369* -6.2536 -6.4952*
[-1.7856] [-1.4220] [-1.9543]

small 1 -4.1531 -5.0725 -9.9128***
high sale [-1.5812] [-0.6850] [-2.8132]

2 -2.8776 -5.5105 -4.194
[-1.1796] [-1.0362] [-1.3573]

3 -7.0473* -7.3758* -7.2115**
[-1.8367] [-1.8315] [-2.4433]

small 1 -1.8499 -0.1049 -5.7142
young [-0.7736] [-0.0137] [-1.4315]

2 -2.7867 -8.3822* -5.5845**
[-1.1933] [-1.7600] [-2.0902]

3 -8.4557** -10.3204*** -9.3881***
[-2.2478] [-2.8822] [-3.3053]

small 1 -3.6428 -0.432 -10.0648***
high inv [-1.3841] [-0.0552] [-2.9128]

2 -2.9884 -8.5901* -5.7893**
[-1.2031] [-1.7891] [-2.0616]

3 -7.0524* -9.6920** -8.3722***
[-1.8104] [-2.5248] [-2.9166]

young 1 -0.8212 -12.0280* -5.0852
high vega [-0.3315] [-1.7938] [-1.3339]

2 -3.0975 6.1775 1.54
[-1.2775] [1.1195] [0.5106]

3 -8.8177*** 0.4351 -4.1913
[-2.5898] [0.0944] [-1.3614]72



Table 14: The table reports Fama and French (1993) alphas, along with robust Newey andWest (1987) t-statistics in square
brackets, of the portfolios that are long and short the top and bottom IV ol portfolios respectively within each classification
of the real option industries and difference in IV ol values between the high and low regimes, ∆IV ol. Industry classifications
are reported across columns and ∆IV ol classifications are reported down the rows. The column labeled ’Mean(0 to 1)’
corresponds to the FF-3 alpha for the portfolio equally-weighted in both industry portfolios within each ∆IV ol classification.
Idiosyncratic volatility is computed relative to FF-3. All portfolios are value-weighted. We use daily data over the previous
month and rebalance monthly. We sort stocks into three portfolios sorted on idiosyncratic volatility relative to the FF-3
model. At the end of each June, we independently sort stocks into whether they belonged to the Natural Resources, High
Technology, and Bio Technology industries, and whether they belonged to any one of the three industries (All G.O. Industries)
on the basis of Fama and French (1997) industry classifications. Independent sorts of ∆IV ol are done once using in-sample
values of IV ol for each stock and then grouping stocks on the basis of the 33th/66th NYSE ∆IV ol breakpoint values.

RO Proxy Rank

RO Proxy ∆Ivol Rank 0 1 Mean(0 to 1)

Natural 1 -1.6231 6.8209 3.1442
Resources [-0.5745] [1.3028] [0.9702]

2 -1.7178 -2.7294 -2.2236
[-0.6962] [-0.6421] [-0.9270]

3 -7.0048** -11.2290** -8.9211***
[-2.1141] [-2.5374] [-3.5191]

High 1 0.3569 0.7912 0.5179
Tech [0.1429] [0.1257] [0.1458]

2 -0.8473 -8.2843** -4.5658*
[-0.3146] [-2.2199] [-1.9168]

3 -10.9527*** -8.6281* -9.7904***
[-3.1950] [-1.6827] [-3.2519]

Bio 1 -0.8241 7.5278 4.0748
Tech [-0.2945] [1.2412] [1.2224]

2 -3.0634 -4.2983 -3.6546
[-1.2751] [-1.0584] [-1.4655]

3 -7.7035** -12.9701** -9.6440***
[-2.1873] [-2.2989] [-2.7023]

All G.O. 1 -0.8772 6.3261 2.709
Industries [-0.4017] [1.0666] [0.8223]

2 -0.7051 -6.5709** -3.6380*
[-0.3291] [-2.1681] [-1.7147]

3 -12.3964*** -13.3725*** -12.8844***
[-4.1275] [-3.3579] [-4.8065]
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Figure 1: Model Results. The figure shows the option values, and the option exercise policies P1 and P2

in P space for the low and the high volatility regimes. The 45 degree solid line corresponds to the intrinsic
value of the growth option. Option values in the high and low volatility states are depicted by dashed and
dashed dotted curves respectively. The exercise thresholds are depicted by the vertical dotted lines where
the lower threshold corresponds to the exercise threshold P1 if the option is the low volatility regime, and
the higher threshold corresponds to the exercise threshold P2 if the option is the high volatility regime.
Panel (a) depicts the model solution corresponding to parameters σP,H = 0.5, σP,L = 0.1, panel (b) depicts
the model solution corresponding to parameters σP,H = 0.4, σP,L = 0.2, and panel (c) depicts the model
solution corresponding to parameters σP,H = 0.3, σP,L = 0.3.

(a) σH = 0.5, σL = 0.1 (b) σH = 0.4, σL = 0.2
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Figure 2: Model Solution. The figure shows the differences in growth option beta, the continuous drift,
the jump, and the diffusion terms of the jump-diffusion process (3.7) between the high and low volatility
regimes in P space based on the model developed in Section 3 of the paper. Panel (a) shows the differences
in option betas, panel (b) shows the differences in the diffusion term, panel (c) shows the differences
in the continual drift term, and panel (d) shows the differences in the sporadic jump term. The figure
shows separate results corresponding to different set of model parameters, i.e. σP,H = 0.5, σP,L = 0.1,
σP,H = 0.4, σP,L = 0.2 and σP,H = σP,L = 0.3.
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Figure 4: Simulation Results. The figure shows the average risk-adjusted value-weighted portfolio returns
of the ten decile portfolios formed after sorting equity returns by σP,i using the simulated data based
on the model developed in Section 3 of the paper. Risk-adjusted equity returns are sorted into decile
portfolios based on the idiosyncratic volatility regime at the end of the previous month. Then, the average
of the value-weighted one-month holding period portfolio returns are computed using the monthly risk-
adjusted returns on the firms’ equity. The portfolios are rebalanced at the end of each month. The figure
shows separate portfolio returns corresponding to the simulated samples where σP,H = 0.5, σP,L = 0.1,
σP,H = 0.4, σP,L = 0.2 and σP,H = σP,L = 0.3.
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