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PRELIMINARY. COMMENTS WELCOME.

Abstract

We provide a rational model of capital allocation to projects with uncertain expo-

sure to a systematic risk factor. We show that signal-to-noise ratios are highest when the

factor realization is close to zero. As a result, investors redirect more resources across

projects during these times. This finding resonates with the Schumpeterian intuition

that downturns have a cleansing effect on the economy by improving the efficiency

of capital allocation. We measure the speed of capital reallocation with the sensitiv-

ity of mutual fund flows to performance and find supporting evidence for the model’s

nonlinear and linear predictions.
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1 Introduction

Schumpeter (1942) argues that recessions have a cleansing effect on the economy, in

the sense of accelerating reallocation of capital to more productive uses. But what makes

investors more willing to part with their less valuable projects in bad times than in good

times? Is a behavioral friction necessary to generate such an asymmetry, or can it emerge

even within a rational framework? More generally, under which assumptions does the speed

of capital reallocation depend on the state of the economy?

In this paper, we show that a parsimonious rational model that assumes uncertainty

about risk loadings can generate such a dependence, and in particular, a higher speed of

cross-sectional capital reallocation in downturns.

In the model, rational agents allocate capital to investment projects. We assume no fric-

tions besides uncertainty about the parameters of the cash-flow generating process. Investors

learn about the NPV of the project (alpha) from its cash flows, but uncertainty about risk

loadings (betas) complicates their inference. Whereas the realization of the risk factor is

perfectly observable, the risk loading is estimated with some error, which introduces noise

into the learning process. Under these assumptions, the informativeness of project returns

about alpha is small when factor realizations are extreme – either very high or very low –

because the large factor realization magnifies the uncertainty about beta. By contrast, for

moderate factor realizations, the noise arising from uncertain betas is muted. As a result,

the signal-to-noise ratio is highest for factor realizations around zero, and rational investors

react more strongly to performance during these times. Identifying (moderate) downturns

with periods of (moderately) low realizations of the systematic factor, the model generates

the Schumpeterian intuition that in (moderately) bad times, investors reallocate more capital

across projects.

1



 Electronic copy available at: http://ssrn.com/abstract=2263944  Electronic copy available at: http://ssrn.com/abstract=2263944 

The insights of the model apply equally to asset pricing, corporate finance, labor eco-

nomics, and other fields.1 In this paper, we test the model predictions with capital flows to

mutual funds. Our choice has three motivations. First, about 30% of US corporate equity

is held by US investment companies (ICI, 2012). Hence, mutual funds intermediate a sig-

nificant fraction of capital allocation to firms. A high speed of capital reallocation across

funds is therefore likely to be correlated with a high speed of capital reallocation across

firms. Second, to the purpose of testing the predictions of our model, we can easily proxy

the speed of capital reallocation across projects using the sensitivity of fund flows to fund

performance. Third, given the sheer size of this sector and its importance for households’

savings and retirement income, whether the allocation of capital to mutual funds follows

rational patterns is an open and interesting question in itself.2

Most prominent in the mutual fund literature, Berk and Green (2004)’s (BG) model fea-

tures Bayesian investors who allocate more capital to funds with high relative performance

as a result of their learning about manager skill.3 One dimension that the literature leaves

unexplored is uncertainty about fund risk loadings. BG model fund returns in excess of a

benchmark, implicitly assuming risk loadings are perfecly observable by investors. However,

there seem to be reasons to relax this assumption. In contrast to stocks for which quasi-

continuous observation of returns allows investors to infer second moments arbitrarily fast

1For example, Schmalz and Zhuk (2013) show that stock returns react more strongly to earnings news in
downturns than in upturns. Jenter and Kanaan (2006) show that CEO turnover is higher in downturns than
in upturns, challenging models of relative performance evaluation.

2US households invest 23% of their financial assets and more than 50% of their retirement savings through
IRAs and 401(k)s in mutual funds (ICI, 2012). From a welfare perspective, the possibility that irrational
forces drive savings decisions of that magnitude could be a major concern.

3The BG model explains lack of performance persistence by assuming rational investors combined with
decreasing returns to scale of funds. Huang, Wei, and Yan (2007) add participation costs to generate a convex
shape of the flow-performance relation (see also Lynch and Musto (2003)). Elaborating on the BG model,
Huang, Wei, and Yan (2012) derive cross-sectional predictions on the flow-performance sensitivity (FPS) in
an economy in which Bayesian and performance-chasing investors coexist.
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(Merton, 1980), mutual fund returns are observed at most daily, which hinders similarly fast

and accurate inferences about risk loadings. Fund betas cannot be perfectly inferred from

portfolio holdings combined with stock returns either, because a large amount of portfolio

rebalancing between reporting dates is concealed from investors (Kacperczyk, Sialm, and

Zheng, 2008). Taken together, infrequent reporting of holdings combined with frequent port-

folio rebalancing and the lack of continuously observed fund returns prevent investors from

perfectly learning fund risk loadings. These considerations suggest that uncertainty about

risk loadings is a realistic assumption regarding the allocation of capital to mutual funds.

In the empirical implementation, we measure the speed of capital reallocation by the sen-

sitivity of mutual flows to performance, while we proxy for systematic risk using the market

factor. Our main result is that the estimated flow-performance sensitivity (FPS) depends on

the realization of market excess returns in a nonlinear and non-monotonic fashion, consistent

with the model’s predictions. Figure 1 displays a parametric estimate of the function linking

the flow-performance sensitivity to the market excess return. We find that the FPS is more

than twice as high for market realizations close to zero than for extreme market returns. We

corroborate this result in linear regression tests comparing the FPS during extreme, positive

or negative, market returns to the FPS during times with market returns around zero.
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Figure 1: Parametric estimate of the flow-performance sensitivity as a function of the quar-
terly market return in excess of the risk-free rate, and density of excess market return (kernel
estimation). The shaded areas are the lowest and highest quartiles of the excess market re-
turn distribution, a way the literature has measured “downturns” and “upturns,” respectively
(more details in sections 4 and 5).

Whereas the FPS is symmetric with respect to zero market returns in excess of the

risk-free rate, an asymmetry between upturns and downturns arises because the empirical

distribution of market excess returns peaks at positive values, that is, to the right of the

peak of the FPS. As a result, relatively low realizations of the market return, compared to

the median market return, are closer to the FPS’s peak than relatively high relatizations of

the market return. Figure 1 displays this asymmetry in the FPS relative to the empirical
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distribution of the excess market return. We follow the literature in labeling the realizations

in the lowest quartile of historical market returns as “downturns” and the realizations in

the highest quartile as “upturns” (Glode, Hollifield, Kacperczyk, and Kogan, 2012) and

represent them as shaded areas under the empirical density function. Downturns, on average,

are characterized by higher FPS than the upturns. Table 1 shows results from linear tests of

the FPS upturn-downturn difference. Estimates of the FPS in downturns are twice as large

as the estimates of the FPS in upturns, and the difference is statistically significant.

Table 1: Slopes from Fama and MacBeth (1973) regressions of quarterly flows on prior-
quarter mutual fund rank by style-adjusted performance (“flow-performance sensitivities”)
for upturns and downturns. Upturns and Downturns are defined, respectively, as the top
and bottom 25% of periods according to the distribution of the CRSP value-weighted index
since July 1926 as in Glode, Hollifield, Kacperczyk, and Kogan. The last column reports
the difference in coefficients between Downturns and Upturns. T-statistics are reported in
parentheses.

Upturns Downturns Down-Up

Flow-Performance Sensitivity 0.020*** 0.045*** 0.025***
t-stat (3.489) (5.551) (2.564)

We present additional tests of the model to help rule out alternative theories that could

predict similar time-series patterns of the FPS. In particular, we wish to establish how differ-

ences in the FPS between upturns and downturns vary across fund types. This difference-in-

differences approach helps eliminate endogeneity concerns that are present in the estimation

of the time-series prediction alone. In particular, our inference about the upturn-downturn

FPS difference might be driven by the new capital that flows into the sector in upturns

and flows out of the sector in downturns, rather than by the reallocation of capital within

the sector. Also possible, investors might be less scrupulous in their investment decisions in
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upturns than in downturns for behavioral reasons. The double-difference approach identifies

our theory against these alternative explanations.

In particular, we first predict cross-sectional differences of the FPS. Similar to BG and

other existing learning theories, when investors have less precise prior beliefs about funds’

performance parameters (e.g., because the funds are young or follow a particularly active

investment style), each observation leads to a more pronounced updating of prior beliefs,

resulting in a higher FPS for these funds. Second, and unique to our model, we predict that

these cross-sectional differences vary across states of the economy: we predict that funds that

have a steeper unconditional FPS (i.e., funds associated with less precise prior beliefs) have

a higher FPS difference between upturns and downturns. Inflows into the sector as a whole

cannot easily generate such predictions for cross-sectional differences in the time variation of

the FPS. Similarly, behavioral theories that might have the potential to explain the upturn-

downturn difference do not easily predict a cross-sectional difference in the upturn-downturn

difference at the same time.

The data bear out both the cross-sectional and difference-in-differences predictions for

the FPS. We empirically proxy for investors’ dispersion in beliefs using measures of active

share and tracking error that are drawn from Cremers and Petajisto (2009), because these

measures are correlated with higher dispersion of estimated alphas and betas. In particular,

we take what these authors call “concentrated funds,” that is, those ranking high in both

active share and tracking error, as examples of funds for which investors have less precise

prior beliefs. (Similar results obtain for young funds.) Figure 2 illustrates the empirical

results comparing the FPS of Concentrated funds to all Other funds in different states of

the economy. As the model predicts, the flow-performance relation of Concentrated funds is

steeper on average, and the difference between slopes across downturns and upturns is larger
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compared to Other funds. This difference-in-differences is highly statistically significant.

Both the model and empirics are robust to whether the flow-performance relation is

convex or linear – a long-dating question (Chevalier and Ellison, 1997; Sirri and Tufano,

1998) recently reinvestigated by Spiegel and Zhang (2012): our theoretical model can be

combined with participation costs, which generate convexity (Huang, Wei, and Yan, 2007),

and our empirical results hold in both linear and convex specifications.

The paper proceeds as follows. Section 2 describes the relation of our model and empir-
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ical results to the existing mutual fund literature. Section 3 presents the model. Section 4

describes the data, defines variables, and explains the empirical strategy. Section 5 gives the

empirical results. Section 6 concludes.

2 Related Literature

Given the choice to use our model to explain the behavior of mutual fund investors, we

restrict our review to papers within this literature.

Similar to (Berk and Green, 2004, BG), our model features the following: investors that

provide capital to projects (here: mutual funds) in competitive ways, heterogeneity in the

performance parameters of fund managers, decreasing returns to scale, and investors who

rationally learn from past returns according to Bayes’ law. The key difference from BG is

that we allow for heterogeneous exposure of funds to time-varying benchmark returns and

investors’ uncertainty about that risk loading.

The assumption that investors do not have perfect knowledge about the extent to which

fund returns load on systematic risk may seem counterintuitive at first. The fact that second

moments can be learned arbitrarily fast when returns are continuously observed is well known

(Merton, 1980). However, estimating performance parameters of mutual funds is necessarily

less precise because fund returns are not continuously observed. Also, portfolio betas cannot

be easily reconstructed, because the portfolio is often rebalanced in a way that is unobservable

to outside investors (Kacperczyk, Sialm, and Zheng, 2008).

In an effort to focus on the model’s new predictions about the dependence of the FPS

on the market state, we do not speak to several questions BG’s model is suited to address.

In particular, we do not derive the optimal compensation contract for the fund managers
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(Holmström, 1999), we do not endogenize the fee structure of the fund, and we do not explic-

itly discuss entry into and exit from the mutual fund sector (Berk and Green, 2004). Given

little evidence of capital withdrawals from the sector in downturns (Pastor, Stambaugh, and

Taylor, 2013) and our difference-in-differences design that mechanically controls for an effect

from sector in- and outflows, we think withdrawals from and additions to the sector will have

only a marginal impact on estimation results that speak to our research question.

Elaborating on the BG model, Huang, Wei, and Yan (2012) derive cross-sectional pre-

dictions on the FPS in an economy in which Bayesian and performance-chasing investors

coexist. Like these authors, we exploit heterogeneity in parameter uncertainty across funds

to identify our model. However, our theory relies on rational investors alone and focuses

on the implications of parameter uncertainty on the dependence of the flow-performance

relation on both fund types and market states.

Li, Tiwari, and Tong (2013) develop a model with ambiguity-averse investors who receive

multiple signals of unknown precision about fund performance. Investors’ flows react more

strongly to the most negative signal. This prediction holds empirically when the authors

use fund ranking over different horizons to proxy for the multiple signals. Our contribution

differs from this model in that it is entirely cast within a Bayesian framework. Like us, these

authors find stronger evidence among retails funds, for which the degree of uncertainty is

likely higher.

Although we may be the first to jointly allow for uncertainty with respect to both alpha

and funds’ factor loadings, we are not the first to allow for uncertainty in more than one

parameter. Pastor and Stambaugh (2012) allow for uncertainty with respect to the decreas-

ing returns-to-scale parameter, which our model assumes is a known constant, and does not

in fact drive any of the model’s results. Their model explains the size of the actively man-
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aged fund industry, whereas ours focuses on cross-sectional and time-series differences in the

sensitivity of investor flows to fund returns.4

The model does not specify the pricing kernel for the traded assets in which mutual

funds invest. Also, it does not take a stand on whether managers are perfectly or only limit-

edly rational as in Kacperczyk, Nieuwerburgh, and Veldkamp (2012), whether they generate

abnormal performance by market timing or stock picking (Kacperczyk, Van Nieuwerburgh,

and Veldkamp, 2012), and whether the parameter distributions we assume are the result of

strategic choice by managers or, instead, managers are endowed with them, as our model

assumes.5 Also, we do not model the fund-manager matching process (Gervais and Strobl,

2013), but we take the outcome as given.

Several authors have used the insight that risk-averse investors value mutual fund returns

more in downturns than in upturns to study implications of the time variation in the value of

active management as a whole (e.g., Moskowitz (2000); Kallberg, Liu, and Trzcinka (2000);

Kosowski (2006); Sun, Wang, and Zheng (2009); Glode (2011)). Our contribution is to study

the implications of the same insight for the cross-sectional reallocation of capital within the

mutual fund sector, which is reflected in the flow-performance relation.

Empirically, we complement the literature on the flow-performance relation (see Spiegel

and Zhang (2012)) by documenting that the FPS, which reflects within-sector flows across

funds among retail mutual funds, depends in non-monotonic ways on the market state. It is

higher in moderate than in extreme states of the market, and is twice as steep in downturns

4Outside of the mutual fund literature, Adrian and Franzoni (2009) also postulate that investors learn
about unobservable risk factor loadings for stocks and show that this mechanism can explain part of the
value premium under specific conditions on the learning process.

5Further distinctions from Kacperczyk, Nieuwerburgh, and Veldkamp (2012) are that our model contains
no asymmetric information and we do not assume parameter distributions or risk aversion to vary exogenously
as the state of the economy changes. The latter element clarifies that asymmetric fund flows obtain in our
model even if no asymmetry is present in the model parameters.
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than in upturns.

3 Model

We develop a model featuring uncertainty about factor loadings in which Bayesian agents

learn the NPV of investment projects. When applied to mutual funds, the NPV refers to the

fund’s benchmark-adjusted returns, or alpha.6Aside from Bayesian learning, our model does

not feature any other friction. Because we test the model using mutual fund data, we phrase

its elements and predictions accordingly. Yet we believe that the predictions of the model

extend to investment decisions that are taken under uncertainty on the relevant parameters

of performance and risk.

3.1 Setup

There are N funds to which investors can allocate their capital. The cash that fund i

returns at time t from every dollar invested at time t− 1 is denoted Y i
t . Although the true

return process may have different drivers, the returns can be decomposed in reduced form

as

Y i
t = 1 + αi + βi · ft −

1

η
Sit−1 + εit, (1)

where αi is a fund-specific, time-fixed performance parameter indicating a manager’s skill to

generate returns in excess of the benchmark, given fund size; βi is a fund-specific, time-fixed

exposure to a time-varying systematic risk factor; ft is the time-t realization in excess of the

risk-free rate of a traded risk factor, which in the empirical analysis we proxy using the excess

6We draw inspiration from Schmalz and Zhuk (2013), who model learning about the value of assets from
cash-flow news as a function of the market state when asset-specific cash-flow parameters are uncertain.
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market return; Sit−1 is the size of the fund resulting from the investors’ capital allocation in

period t− 1; η > 0 is an efficiency parameter, such that − 1
η
Sit−1 indicates decreasing returns

to scale;7 and εit ∼ N (0, σ2
ε) are idiosyncratic shocks.

For convenience, we decompose the factor return as

ft = f̄ + ξt, (2)

where ξt is a zero-mean transformation of the risk factor, which is normally distributed

and iid over time, ξt ∼ N (0, σ2
ξ ), and f̄ is the expected return of the factor, which we

assume is constant over time and known to the investors. We think of the risk premium

on the benchmark as the stochastic discount factor applied to the factor ft. We assume

the benchmark ft covaries negatively with the stochastic discount factor. As a result, the

expected return on the benchmark equals its risk premium and is positive in equilibrium,

f̄ > 0.8 The existence of a risk-free asset, whose return is normalized to zero without loss

of generality, allows for flows into and out of the mutual fund sector base as overlapping

generations of agents with identical risk-averse preferences who are uncertain about the

precise values of both αi and βi.9 Investors know that these parameters are sampled from a

jointly Normal distribution with known mean, variance, and covariance that is identical for

7Decreasing returns to scale do not play a role in the mechanism we describe. They merely simplify the
exposition and make the model consistent with BG.

8The only assumption needed to endogenize this assumption is risk-averse investors.
9Compared to the model of the allocation of capital to mutual funds by BG, the crucial difference is that

we allow uncertainty about risk loadings βi. Technically, this heterogeneity introduces a second parameter
in investors’ inference problem compared to BG.
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all funds of a given category:

N


 ᾱ

β̄

 ,

 σ2
α σαβ

σαβ σ2
β


 . (3)

We require investors’ prior beliefs to be consistent with the true distribution of parameters

in the cross section given by equation (3). A further discussion of the above assumptions

follows.

3.2 Discussion

We assume that the benchmark investors use to value mutual funds, ft, covaries positively

with the stochastic discount factor, and, as a result, the risk premium on this benchmark,

f̄ , is positive. Although plausible, a positive factor risk premium is not necessary to derive

our key result – the function linking the FPS to the factor realizations (equation (6)) – ,

nor for the result deriving the ranking of the FPS between moderate and extreme factor

realizations (proposition 1), and the cross-sectional predictions (proposition 3). However, a

positive market risk premium is necessary to obtain the asymmetry between upturns and

downturns (proposition 2) and the difference-in-differences prediction (proposition 4).

Although the model can be solved allowing for non-zero correlations between α and β,

this generalization unnecessarily complicates the analytical solutions, without substantially

affecting the intuition. We thus assume σαβ = 0. Also, whereas the parameters may be the

outcome of a strategic interaction between managers and investors, here we assume fund

investors take both αi and βi as exogenous.

αi can be interpreted as either stock-picking skill or market-timing skill. The stock-picking

interpretation is straightforward. To gain intuition on market (or factor) timing, one can as-

13



sume for a moment that the βi of manager i is allowed to vary over time in a systematic

fashion, whereas the manager has no stock-picking skill. In particular, suppose βit is always

positive in upturns (when ξt > 0) and always negative in downturns (when ξt < 0) . Such a

manager can generate high average returns Y i
t with low market correlation. To an investor

running the regression (1) that constrains market exposure to be constant, βit = βi, this

manager appears to have high static αi and low static βi. To the investor, this manager’s

performance is therefore observationally equivalent to and also equally valuable as the per-

formance of a manager without timing ability but with stock-picking skill. Effectively, the

investor is indifferent about how the manager generates returns. This example illustrates

that we can assume the investor remains ignorant about the particular sources of the man-

ager’s skill. In sum, equation (1) is not necessarily the true cash-flow process of funds, nor do

investors need to believe it is. It is merely one possible, and convenient, description of cash

flows that is sufficient to describe the inference problem that is relevant to the investors’

utility-maximization problem.

Although the model is generally compatible with any strategy managers may employ to

generate returns, including stock picking and market timing, constructing cases in which the

assumption of normality of the parameter distributions is violated is, of course, possible.

For example, if managers systematically have skill only in particular states of the economy,

investors could not reasonably believe the parameter distributions are normal. However,

we deliberately assume symmetric parameter distributions to emphasize that asymmetric

behavior across states of the economy obtains as an outcome of the model, even if parameters

and their distributions do not change as a function of the state of the economy. For example,

allowing for higher macro volatility in downturns than in upturns, that is, a negatively skewed

ξt, or increased risk aversion in downturns, would presumably strengthen the prediction of

14



a higher FPS in downturns. Of course, obtaining closed-form solutions would be difficult or

impossible for such cases.

3.3 Timing

The investors hold funds of equibrium size Sit−1 consistent with prior beliefs α̂it−1 and

β̂it−1 about the true parameters αi and βi according to equation (3). Returns Y i
t are realized

and observed by investors, from which they can infer ft, or equivalently ξt. Conditioning on

ξt, investors then compute posterior beliefs α̂it and β̂it and thus determine new equilibrium

fund sizes Sit (derived below). The change of fund sizes determines the reallocation of capital

across funds. Relating these flows to performance Y i
t yields the flow-performance sensitivity.

3.4 Equilibrium

Based on the above assumptions, the market’s current belief α̂it about αi determine

equilibrium fund sizes.

Lemma 1. Fund i’s equilibrium size Sit, based on the investors’ belief α̂it at time t about skill

αi is given by

Sit = η · α̂it. (4)

The formal proof is in the appendix. The intuition is straightforward. Investors determine

allocations to funds so that the expected utility of a marginal dollar in each fund equals the

outside option of the risk-free rate, which is normalized to zero. In so doing, the expected

value of fund returns based on current beliefs, 1 + α̂it + β̂it · f̄ − 1
η
Sit , is adjusted for the

fund’s estimated sensitivity to the risk factor, β̂it , multiplied by the factor risk premium f̄ ,

which represents how much investors dislike risk exposure, thus canceling the β̂it · f̄ term. In
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words, investors do not care about the risk exposure of funds, because they are appropriately

compensated for the risk they are taking. β only matters in our model because uncertainty

about β affects the speed of learning about α.

3.5 Fund Flows

3.5.1 Intuition

Equation (4) combined with (1) conveys the intuition of the model. The quantity of

interest is αi, whereas investors observe Y i
t = ...+αi +βi · ft + ...+ εit, that is, their quantity

of interest plus different kinds of noise. When ft = 0, the only noise preventing investors

from directly inferring αi is εit. The βi-related component of the noise is “switched off” and

uncertainty about risk loadings is inconsequential for learning. By contrast, when |ft| > 0,

an additional element of noise obscures the inference. If βi were known, investors would need

only to subtract a constant from the fund’s returns. With unknown βi, however, investors

do not know what exactly to subtract from any particular fund i’s return to calculate its

risk-adjusted performance. Hence they have to treat the additional term as noise. The more

uncertain they are about βi, the more noisy the observation seems to them, particularly when

|ft| is large. The signal-to-noise ratio is highest when ft = 0, and decreases symmetrically

both for higher and lower factor realizations.

To convey intuition about the relation between the speed of capital reallocation and

the state of the market, let us interpret ft as the excess market return, ft = RM,t, and

f̄ as the average market excess return. This interpretation is legitimate in that any factor

summarizing investors’ pricing kernel is going to be positively correlated with the market

return. Some empirical literature (Glode, Hollifield, Kacperczyk, and Kogan, 2012) defines

upturns as realizations of the market return above a given percentile and downturns as
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realizations below the symmetric percentile. Then an asymmetry in the speed of capital

reallocation between upturns and downturns arises because the mean and median market

returns are above zero, whereas the speed of capital reallocation peaks at zero realizations

of the factor, which are closer to downturns according to the above definition. Figure 1,

discussed in the introduction, summarizes this intuition.

3.5.2 Formal results

The main insight of the model is that the sensitivity λ of flows, F i
t , to unexpected per-

formance, Y i
t − Et−1[Y i

t ], depends on the factor realization, ξt, that is, λ = λ(ξt).

Lemma 2.

F i
t := Sit − Sit−1 = η · λ(ξt) · (Y i

t − Et−1[Y i
t ]), (5)

where

λ(ξt) =
σ2
α

σ2
α + σ2

β

(
f̄ + ξt

)2
+ σ2

ε

. (6)

Recall that σ2
α and σ2

β denote the dispersion of parameters αi and βi, according to (3),

and thus the degree of uncertainty about these parameters. λ(ξt) is the FPS and corresponds

to the signal-to-noise ratio.10 Note also that Y i
t are percentage returns (dollars returned for

every dollar invested), and Sit can also be scaled by dollars invested. Thus λ(ξt) is closely

linked to its empirical anologue.

The intuition is straightforward. First, consider the case in which no uncertainty about

risk exposure is present, σ2
β = 0. Then the FPS λ does not depend on the factor realization,

ξt, and the intuition developed in BG and other models obtains. For example, the more

dispersed alphas are believed to be, that is, the higher σ2
α is relative to σ2

ε , the stronger the

10For the difference in fund sizes Sit − Sit−1 to correspond to between-fund flows, it is implicitly assumed
that each fund i distributes the net return Y it − 1 at the end of period t.
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reaction to news, that is, the steeper the FPS. Intuitively, if very high and low fund returns

are deemed realistic and attributable to exceptionally high or low skill, rational investors are

less prone to impute abnormal fund returns to random noise, and will therefore react more

strongly to the news. Young funds, or funds with a manager of low tenure, are candidates

the literature has used for a high ratio of σα to σε (BG). In the main empirical analysis,

we proxy this higher degree of parameter uncertainty using Concentrated funds, as defined

below. Conversely, if signals are less informative, that is, lower σ2
α for given σ2

ε , then one-

time abnormal performance of a given size triggers lower flows. In sum, the ratio of σ2
α to σ2

ε

summarizes the signal-to-noise ratio in the case of σ2
β = 0.

Let us now introduce uncertainty about βi, σ2
β > 0, thereby making the FPS, λ, depend

on the factor realization, ξt. A positive σ2
β dampens the FPS. This effect depends positively

on the absolute magnitude of the total factor realization ft = f̄ + ξt. The dependence of λ

on ξt, and the sensitivity of this dependence on uncertainty about αi and βi, is the driver of

all our empirical predictions.

In the empirical analysis, we provide nonlinear estimation results that directly test for the

functional form of the flow-performance relation in equation (6). In doing so, we can rule out

alternative theories that could also drive the empirical predictions that follow. For example,

a steeper FPS in downturns also arises when σ2
β = 0 (so the mechanism proposed in this

paper is shut off), but σ2
α is negatively correlated with the factor realization. In that case, λ

would be a monotonically decreasing function of ξt. By contrast, under our assumptions, λ(ξt)

is non-monotonic, thereby allowing us to distinguish between the two alternative theories

empirically.
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3.6 Empirical Predictions

This section derives empirical predictions that are testable with linear regression models.

The first two predictions, regarding the variation of the FPS between “moderate” and “ex-

treme” realizations of the factor as well as between upturns and downturns, do not require

additional assumptions. For the cross-sectional and difference-in-difference predictions, we

assume that identifying two groups of funds that can be ranked in terms of the dispersion

of investors’ beliefs about alpha and beta is possible.

3.6.1 Flow-Performance Sensitivity in Extreme Market States

Our first prediction is that fund performance is less informative when the realization of

the factor is either very high or very low compared to the information contained in fund

performance when the realization of the factor is closer to zero.

Proposition 1. Flow-performance sensitivities are larger when the market excess return is

close to zero than when it is either very high or very low. For any constant c > 0,

λ(|ft| < c)− λ(|ft| > c) > 0.

We omit the proof because it follows directly from equation (6).

3.6.2 Upturn-Downturn Difference of Flow-Performance Sensitivity

Assuming that the factor ft correlates positively with market conditions, one can legit-

imately call positive (negative) realizations of the factor an upturn (downturn). Then the

second testable prediction is that the FPS is larger in downturns (DT) than in upturns (UT).
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Proposition 2. Flow-performance sensitivities are larger in downturns than in upturns of

equal magnitude. For any x > 0,

λ (ξt = −x)− λ (ξt = x) > 0.

The proof is in the appendix.

3.6.3 Difference-in-Differences Prediction for FPS

When differences exist in the precision of the investors’ ex-ante beliefs across fund types,

the FPS will vary across these fund types. Let us identify two groups of funds that can be

ranked in terms of the dispersion of beliefs about alpha and beta. That is, for some constant

k > 1, define

σ2
α,Concentrated = k · σ2

α,Other (7)

σ2
β,Concentrated = k · σ2

β,Other, (8)

where we use the label Concentrated for funds with higher dispersion of beliefs and Other

for funds with low dispersion of beliefs. These labels reflect the empirical implementation in

which we use results from Cremers and Petajisto (2009) to proxy for heterogeneity of beliefs

regarding the parameters of interest.

It follows immediately from the λ(ξt) expression in lemma 2 that investors react with

higher flows to a given piece of news if it pertains to Concentrated funds. (A similar pre-

diction obtains from established models of fund flows such as BG in comparing funds with

higher parameter uncertainty to funds with lower uncertainty, such as young and old funds.)
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Proposition 3. Keeping everything else constant, the flow-performance sensitivity is higher

for Concentrated funds than for Other funds on average:

λConcentrated − λOther > 0.

The proof is in the appendix. Note the proposition relies on differences in the distributions

of parameters introduced in equation (3), whereas it assumes both funds have investors with

similar prior beliefs and restrictions. Thus it should hold across types of funds that are held

by similar investors, but it need not hold across funds with investors with distinct sets of

beliefs. For example, we would not think it appropriate to test the prediction comparing

the FPS of mutual funds and hedge funds. Similarly, we would not necessarily expect the

proposition to hold across funds that are predominantly held by retail investors versus funds

that are predominantly held by institutions, which are likely to be more informed about

underlying parameters, and have different restrictions to their investment policy. Because we

do not model such constraints, we will test the proposition within funds that cater to retail

investors.

Many things other than market returns themselves might change with market conditions,

including flows into and out of the mutual funds sector. The cleanest way to control for such

confounding factors is to difference them out. To that end, we predict and later show that

the difference in FPS differences across market states depends positively on the dispersion

of parameters of the fund type. (In other words, the cross-sectional differences of the FPS

across funds depends on the market state.)

Proposition 4. The difference in flow-performance sensitivities between downturns (DT)
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and upturns (UT) is larger for Concentrated funds than for Other funds:

(λDT − λUT )Concentrated − (λDT − λUT )Other > 0.

The proof is in the appendix. The intuition is that the downturn-upturn difference comes

from uncertainty about β – and Concentrated funds feature more uncertainty about β.

The prediction in proposition 4, combined with the non-linear predictions, is unique to

our model. If this difference-in-differences prediction finds support in the data, we will say

the model is “identified” in the sense of ruling out several alternative explanations for the

upturn-downturn difference predicted in proposition 2. For example, one might otherwise

conjecture the upturn-downturn difference obtains because “everybody is happy in upturns”

and investors do not check fund performance, whereas investors scrutinize fund performance

in downturns. However, such a behavioral theory would not easily explain why the upturn-

downturn difference would differ across different types of funds. In section 5, we describe

alternative theories in more detail.

3.7 Model limitations

One limitation is that the model is essentially static. Taking the model as is seems

to imply that after sufficiently many observations, investors learn parameter values well

enough for the FPS first to fall, and then for all flows to disappear. A more realistic model

would assume funds periodically disappear (for exogenous reasons or because they perform

below a threshold) and get replaced with new ones, about which little is known. Similarly, in

reality, turnover in fund managers occurs, which introduces new uncertainty about underlying

parameters. When the model is modified in a way that parameters get periodically reassigned
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for a fraction of funds, the average precision of beliefs about fund value is highest following

downturns (this result would be driven by the dynamics of σαβ, which is assumed to be

zero in this presentation of the model). As a result, fund sizes most closely match a first-

best allocation without parameter uncertainty following downturns, which strengthens the

Schumpeterian intuition that recessions have a cleansing effect on the economy. We therefore

think the static model captures a similar intuition a dynamic model would produce, but with

a much simpler exposition.

A related limitation results from the assumption of no learning about the realization of

the risk factor and, eventually, about the stochastic discount factor as featured, for example,

in Veronesi (1999). Technically, investors need not learn about the realization of the factor,

because the number of funds is large and the factor is assumed to be iid. To our knowledge,

no existing model is able to track both the cross-sectional (fund types) and time-series (the

risk factor) dimensions at the same time.

A third limitation is that the parameters αi and βi are exogenous in the model. We have

several reasons for this modeling choice. First, obtaining the key predictions may be pro-

hibitively difficult if the parameters are endogenous and a result of fund managers’ choice.

Second, including the managers’ choice would come at the expense of having to make assump-

tions about their preferences and incentives, which would make inferring which part of our

results comes from assumptions about investor preferences, which from assumptions about

managers’ incentives, and which from investor behavior more difficult. We want to make

clear that only Bayesian inference on behalf of investors drives the results in the present

model. The model does not preclude, however, that the parameter distributions are already

the outcome of an optimization on behalf of the fund managers. Studying the interaction of

investor and manager behavior when skill αi is exogenously distributed and known to the
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manager but uncertain to investors, and βi is a strategic choice of the manager and likewise

uncertain to the investor, may be an interesting subject for future research.

A fourth observation warranting attention is that any cross-sectional predictions, and

especially the difference-in-differences prediction on the FPS, rely on a homogenous set of

investors across different types of funds that does not face constraints with respect to their

capital reallocation other than the limitations imposed by parameter uncertainty. The model

predictions should therefore only hold within a set of funds with a reasonably homogenous

investor base that is unrestricted in its investment choices.

4 Description of the Data

The primary data source for this study is the CRSP Survivorship Bias Free Mutual

Fund Database. These data contain fund returns, total net assets (TNA), investment objec-

tives, and other fund characteristics. Following the prior literature, we select domestic equity

open-end mutual funds and exclude sector funds using the CRSP objective code (which maps

Strategic Insights, Wiesenberger, and Lipper objective codes). Because the reported objec-

tives do not always indicate whether the fund is balanced, we exclude funds that on average

hold less than 80% of their assets in stocks. Given that the focus of this study is on actively

managed mutual funds, we also exclude index funds.

To address the potential bias resulting from the fact that the fund incubation period is

also reported, we exclude observations whose date is prior to the reported starting date of the

fund, similar to Kacperczyk, Van Nieuwerburgh, and Veldkamp (2012). Because incubated

funds tend to be smaller, we exclude funds before they pass the $5 million threshold for

assets under management.
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Mutual funds in CRSP include both retail and institutional share classes. Our model’s

predictions are based on a homogenous set of investors. Therefore, pooling two classes of in-

vestors would blur the empirical tests of the model predictions. Besides, institutional funds

are subject to a number of constraints in terms of minimum investment size, long-term in-

vestment agreements, and limited choice set whenever they are offered to individuals through

a 401(k) plan, which impose restrictions on fund flows our model does not capture. These

arguments prompt us to restrict our empirical analysis to mutual funds that are sold to re-

tail investors and exclude institutional funds. The retail-fund indicator is available in CRSP

starting in December 1999. For the prior years, we backward impute the retail indicator

whenever available and we use the names of share classes to identify institutional funds. We

exclude from the sample the funds for which no information can be gathered on whether

they are retail or institutional. Although this choice has the potential to induce a selection

bias, we show that our results also hold – and indeed are stronger and more significant – in

the subsample in which the retail indicator is available, despite the much lower number of

observations. Thus the imputation introduces noise that leads to attenuation bias but does

not lead to a bias in favor of the hypotheses proposed here.

The sample spans the years from 1980 to 2012, in which complete information on in-

vestment objectives is available. Because CRSP does not report monthly TNA until 1990,

we follow the existing literature and use quarterly data for the flow-performance sensitivity

analysis (Huang, Wei, and Yan, 2007) for the main results. We replicate our results with

monthly data as robustness tests.

Using the quarterly net asset values and returns from CRSP, we compute net flows
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according to the literature standard as

Flowsi,t =
TNAi,t − TNAi,t−1 (1 +Ri,t)

TNAi,t−1

, (9)

where TNAi,t is total net assets in quarter t for fund i, and Ri,t is fund i’s quarterly return,

which are obtained from cumulating monthly returns. Elton, Gruber, and Blake (2001) point

out a number of errors in the CRSP mutual fund database that could lead to extreme values

of returns and flows. For this reason, following Huang, Wei, and Yan (2007), we filter out

the top and bottom 2.5% tails of the the returns and net flows distributions.

Between 1980:Q1 and 2012:Q4, we have 144,382 mutual fund-quarter observations with

valid information on returns and TNA in quarter t and quarter t+ 1, corresponding to 5,763

funds.11 The other variables we use in the analysis, and for which we require availability for

sample inclusion, are the expense ratio, the portfolio turnover ratio, and return volatility,

which is computed over the prior 12 months. These variables are winsorized at the 1st and 99th

percentiles. We compute fund age as the time (in quarters) since the first appearance of the

fund in the overall CRSP sample. Table 2 reports summary statistics for these variables. From

Panel A, we notice that the average (median) fund has a size of $678 million ($82 million).

The maximum fund size is about $109 billion. Fund age ranges from five to 151 quarters.

Our sample is comparable to other studies in terms of return volatility, asset turnover, and

expense ratio (see Huang, Wei, and Yan (2007)).

Part of our analysis makes use of data on active share and tracking error, which are defined

11Starting in the 1990s, some funds offer multiple share classes that represent claims to the same portfolio.
Some authors aggregate different share classes at the portfolio level (see, e.g., Glode, Hollifield, Kacperczyk,
and Kogan (2012)). Following Huang, Wei, and Yan (2007), we abstain from this aggregation because our
purpose is to study fund flows, which differ at the share-class level. This choice does not materially affect
our results.
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as in Cremers and Petajisto (2009) and Petajisto (2013).12 These variables are constructed

using information on portfolio composition of mutual funds as well as their benchmark in-

dexes. The stock holdings of mutual funds come from the CDA/Spectrum database provided

by Thomson Financial. The authors currently make their data available between 1980:Q1

and 2009:Q3.

To define upturns and downturns, we procede as in Glode, Hollifield, Kacperczyk, and

Kogan (2012) and use the distribution of the excess return on the market up to quarter t.

We denote a quarter as an upturn if the excess return on the CRSP value-weighted index for

that quarter lies in the top 25% of the distribution of the quarterly excess market returns

up to quarter t. Symmetrically, a quarter is a downturn if the realization of the market in

that quarter is in the bottom 25% of the distribution. In computing the distribution of the

market excess return, we use the history going back to the third quarter of 1926. As a result,

out of the 131 quarters in our sample, 32 are upturns and 30 are downturns. When using

monthly data, we proceed similarly in defining upturns and downturns. Panels B and C of

Table 2 have summary statistics on the relevant variables at the quarterly frequency in the

subsamples of upturns and downturns. As expected, returns and flows are on average larger

in upturns, whereas other variables are similar in magnitude across market states.

5 Empirical Methodology and Results

Next, we turn to the empirical analysis. We describe the variation of the flow-performance

sensitivity across states of the market first with non-linear least squares and then with OLS

within a Fama and MacBeth (1973) framework. Next, we again use OLS to describe the

cross-sectional variation as well as the difference-in-differences of the FPS. Together with

12We are grateful to Antti Petajisto for making the data available on his website: www.petajisto.net
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the non-linear estimates, the difference-in-differences identifies the model in the sense of

ruling out a variety of alternative explanations.

Throughout the empirical application, we will assume the relevant factor can be proxied

using the market excess return, ft = RM,t and R̄M = f̄ . In doing so, we are motivated by

the conjecture that whatever the underlying pricing kernel is, it is going to be positively

correlatated with the market factor. Because we are not using the factor to compute risk-

adjusted performance, but rather we use it to define upturns and downturns, this assumption

seems warranted.

5.1 First Step: Estimating the Flow-performance Sensitivity

The predictions of the model are expressed in terms of the dependence of the slope of

the relation tying flows to performance (flow-performance sensitivity, FPS). The first step is

to estimate the FPS for a given market realization. To this purpose, we use the estimate of

λt in the regression:

Flowsi,t+1 = a+ λt · frank stylei,t + γ ·Xi,t + εi,t, (10)

where frank styleit is the fractional rank of fund i in period t with respect to funds in the

same style. Note that we allow the slope to depend on t; that is, we estiamte this regression

every period, using the available cross section of funds. For mutual funds, the style is defined

by the CRSP “objective” variable. Xi,t are standard controls, described later. Focusing on

relative performance within a group of funds with the same style, as opposed to fund risk-

adjusted returns, simplifies the analysis in that one does not need to take a stand on the

correct risk model. Also, it avoids introducing measurement error, which would result from
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the estimation error of the risk-adjusted performance. Finally, it complies with the literature

standard for estimating the FPS (e.g., Sirri and Tufano (1998)).

In equation (10), we are constraining flows to be a linear function of performance. This

assumption simplifies considerably the exposition of the results of tests of our predictions,

because we do not need to make the estimated FPS dependent on a specific range in the

support of performance. However, given that the literature also estimates non-linear spec-

ifications of the FPS (e.g., Huang, Wei, and Yan (2007)), in section 5.3, we show that our

conclusions are robust to a convex specification for the FPS.

5.2 Empirical Results

5.2.1 Non-linear Least Squares (NLS) Estimation Results

One of the key features of the model is the predicted non-linear (and non-monotonic)

shape for the FPS as a function of the state of the market, as per lemma 2. In this subsection,

we formally test this prediction on the dependence of the FPS on the realization of the

factor. In particular, we estimate the parameters of equation (6). Because σα, σβ, and σε are

identified up to a common constant, we divide the numerator and denominator of equation

(6) by σ2
α. Using non-linear least squares, we then estimate

σβ
σα

and σε
σα

in the following

specification:

λ̂t =
1

1 +
σ2
β

σ2
α
R2
M,t + σ2

ε

σ2
α

+ ut, (11)

where λ̂t is the estimate of the fFPS in quarter t from regression (10), R2
M,t is the squared

quarterly excess return of the market, and ut is an error term.

Figure 3 shows the results from the non-linear least squares estimation specified in equa-

tion (11), plotting the estimated FPS over market excess returns, including 95% confidence
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bands.13 Table 4 presents the corresponding parameter estimates and t-statistics. Two ob-

servations are in order. First, the null hypothesis that the FPS does not depend on the state

of the market is rejected with high significance: the estimate of
σβ
σα

is 27.401 with a t-stat of

3.107. Note that an estimate for
σβ
σα

that is statistically significant from zero is a test of the

prediction of Lemma 2, which states that the FPS depends on the benchmark realization.14

Second, the FPS as a function of the market excess return first increases and then de-

creases. This fact rules out alternative explanations of the upturn-downturn difference, such

as the one positing that the dispersion of skill in downturns is higher than the dispersion of

skill in upturns. That conjecture would predict a monotonously decreasing FPS as a function

of the market excess return.

In sum, the non-linear estimation results strongly confirm the predictions of Lemma 2,

which is the main prediction of our model. The results furthermore clarify that the two key

drivers of the linear estimation results that follow are (i) the fact that the FPS decreases sym-

metrically with the absolute value of deviations of the market excess returns from zero, and

(ii) the fact that the average FPS is asymmetric with respect to the peak of the distribution

of market returns (see Figure 1).

13The confidence intervals for the fitted values are computed conditioning on the realization of RM,t. Also,
we use the asymptotic normality of the estimators and the result that a non-linear function of X tends to
the same class of distributions as X (Proposition 7.4 in Hamilton (1994)).

14Following more closely the model specification, that is, using absolute performance rather than fractional
ranks as measures of performance, we obtain an estimate of 11.828 for σβ/σα. Comparing this figure with
estimates of σα and σβ from realized monthly (!) returns (Table 3), we note that the estimated dispersion
of betas relative to alphas based on realized returns is in the same order of magnitude, but at least as large
as that implied by flows. As a result, the assumption of uncertainty about βi seems weak relative to the
empirically observed measurement error in βi.
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5.2.2 OLS Estimation Results

Next, we test the empirical predictions in Propositions 1 through 4. Using the Fama and

MacBeth (1973) methodology, we begin by estimating the regression model (10) separately

for realizations of the market close to zero and for realization of the market further away from

zero. This analysis tests Proposition 1, which states that the FPS is higher for realizations

close to zero than for either large positive or large negative realizations. We use the cut-off

c = 5% (other cut-offs give qualitatively similar results).

Table 5 provides the results. Column (1) reports a significant FPS of 0.043 without

conditioning on the state of the market. Column (2) reports a highly significant FPS of

0.029 for “extreme” realizations of the market return that are either below -5% or above

5%. This finding compares to a highly significant FPS of 0.058 for “moderate” realizations

of the market that are above -5% but below 5%. The difference in FPS between extreme and

moderate market states is not only economically large, but also highly statistically significant

(bottom of columns (2) and (3)).

In columns (4)-(6), the result is preserved after introducing all the controls suggested by

Spiegel and Zhang (2012). These controls are the aggregate flows in quarter t + 1 into the

funds that have the same objective as fund i (flows style), the total expense ratio (fee), the

logarithm of TNA (logsize), the portfolio turnover ratio (turn ratio), the return volatility

over the prior 12 months (vol), and the logarithm of the fund’s age (logage). Given that

flows display some persistence, we also include the fund’s flows in quarter t. Column (5)

shows a highly significant FPS of 0.027 for extreme market states, and column (6) shows a

highly significant FPS of 0.043 for moderate market states. Again, the difference is highly

statistically significant.

Next, we estimate the regression model (10) separately in upturns and downturns. This
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analysis provides a test of proposition 2, which states that the flow-performance relation is

steeper in downturns than in upturns.

Table 6 presents the results. The table describes the variation of FPS across binary

upturn/downturn states of the economy. The first three columns give results that do not

include additional controls. The FPS is more than twice as large in downturns (0.051) as

in upturns (0.021) for the average fund (columns (2) and (1)), emphasizing the economic

significance of the result. The difference is also highly statistically significant (bottom of

columns (1/2)). After adding the standard controls in columns (3) and (4), we preserve the

magnitudes as well as the statistical significance of the upturn/downturn difference (bottom

of columns (3) and (4)). Overall, this evidence provides an empirical validation of Proposition

2.

The next step is to test the cross-sectional and difference-in-differences predictions across

fund types and market states given in Propositions 3 and 4. The cross-sectional variation

should arise from the heterogeneity in the degree of ex-ante uncertainty about a particular

fund’s parameters (captured by the model parameters σa and σb). To this purpose, we use the

variables constructed by Cremers and Petajisto (2009) and Petajisto (2013). We conjecture

that for the funds these authors label Concentrated, investors have higher uncertainty about

risk loadings and skill.

According to the authors, Concentrated funds are those that rank highest by both active

share and tracking error. In our application, a Concentrated fund is one that appears in

the top half of the distribution of these two variables. Our intuition is that the extent

of active management that characterizes these funds, both in terms of stock picking and

sector rotation, makes the inference on the underlying parameters of these funds’ returns

more difficult. To the extent that estimated (ex-post) volatility of risk loadings and alphas
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corresponds to ex-ante dispersion of prior beliefs, Table 3 confirms this intuition by comparing

the standard deviation of alphas and factor-loading estimates between Concentrated and

Other funds. Similar results obtain when other proxies for more disperse distributions are

chosen, such as younger funds or smaller funds. We report results for younger funds in the

robustness checks.

Importantly, for the interpretation of the cross-sectional difference results, both types of

funds must have similar investor bases. We do not want differences in the inherent FPS of

one investor group versus another to drive the results. To that end, we use the insight by

Christoffersen and Musto (2002) that fees reflect the performance sensitivity of investors in

a given fund. We compare the total expense ratio for Concentrated and Other funds and

find they are both around 0.014, with a standard deviation of 0.004 and 0.005, respectively.

We conclude that investor types do not significantly differ across these types of funds.

Table 7 summarizes the variation of the FPS across funds and differences of that vari-

ation across market states. The first column shows that the flow-performance relationship

is almost 50% steeper for concentrated funds (coefficient on the interaction frank style ×

Concentrated), irrespective of market states, as predicted by Proposition 3. The difference

is statistically significant (t-stat=2.015). The significance is lost in column (4) when we in-

troduce the controls, but the qualitative result remains. Further, statistical significance fully

comes back in the comparison between young and old funds in Table 14.

Columns (2) and (3) of Table 7 show that the cross-sectional difference is entirely driven

by downturns: the FPS for Concentrated funds in downturns is 0.12 compared to the FPS

for Other funds of 0.045, whereas the FPS in upturns is not significantly different across fund

types. The difference between the FPS of Concentrated and Other funds is therefore much

higher in downturns than in upturns. In other words, the difference-in-differences (between
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downturns and upturns and between Concentrated and Other funds) is 0.111 and is highly

significant (p-value<0.01, see the test at the bottom of columns (2) and (3)). This result

confirms the prediction made in Proposition 4. Columns (4)-(6) report qualitatively and

quantitatively similar results after the introduction of controls.

Econometrically, the double-difference result rules out a number of alternative theories

that could drive the variation in the FPS across market states. For example, suppose new

capital that flows into the mutual fund sector gets primarily allocated with medium per-

formers, possibly attenuating our upturn-FPS estimate, whereas outflows from the sector

primarily hit underperformers, which might steepen the FPS estimate in downturns. Taking

the difference across fund types of the upturn-downturn difference would eliminate such an

effect.

5.3 Robustness Checks

This section establishes that the linear estimation results are robust to (i) a piecewise

linear specification, (ii) sample selection, (iii) the imputation of the retail/institutional indi-

cator, (iv) the proxy for the precision of ex-ante beliefs about parameters, and (v) whether

monthly rather than quarterly data are used, both in the linear and convex specifications.

A large body of literature (starting with Ippolito (1992), Gruber (1996), Chevalier and

Ellison (1997), and Sirri and Tufano (1998)) identifies a convex flow-performance relation.

More recently, other authors (Spiegel and Zhang, 2012) argue that convexity originates from

a misspecified empirical model, and that the relation between flows and performance is truly

linear. This paper does not intend to contribute to this debate, given that our predictions

on the state dependency of the flow-performance relation are insensitive to the shape of this

relation. Still, to assess the robustness of our predictions to alternative empirical specifica-
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tions of the shape of the flow-performance relation, we offer a robustness test that allows for

a piecewise linear relation:

Flowsi,t+1 = a+ b1 · trank style1i,t + b2 · trank style2i,t + b3 · trank style3i,t + εi,t, (12)

where trank style1i,t = min(1
3
, frank stylei,t), trank style2i,t = min(1

3
, frank stylei,t −

trank style1i,t), and trank style3i,t = min(1
3
, frank stylei,t−trank style1i,t−trank style2i,t).

Table 8 has the Fama and MacBeth (1973) estimates for the piecewise linear specification

in equation (12) in the first column. The fourth column also includes the standard controls.

Consistent with the prior literature, we find evidence of convexity of the flow-performance

relation (columns (1) and (4)). More relevant for our purposes, the evidence strongly sup-

ports the predictions of the model. In each interval of the domain of the piecewise linear

specification, the FPS is larger in moderate states than during extreme states of the market

(columns (3) and (2)). This result holds also when we include the controls (columns (6) and

(5)). At the bottom of columns (2), (3), (5), and (6), we report p-values from a chi-squared

test for the equality of the three slopes b1, b2, and b3 between extreme versus moderate

market states. The test rejects the null hypothesis.

Table 9 provides the upturn-downturn test in a piecewise linear specification. The results

are preserved. In each interval of the domain of the piecewise linear specification, the FPS

is larger in downturns than in upturns (columns (2) and (1)). This result holds also when

we include the controls (columns (4) and (3)). At the bottom of columns (1/2) and (3/4),

we report p-values from a chi-squared test for the equality of the three slopes b1, b2, and b3

between upturns and downturns. The test rejects the null hypothesis. Given the consistency

of the conclusions between Tables 5 and 8, and between Tables 6 and 9, we feel legitimized
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to use the linear specification in the main analysis, which easily allows us to more easily test

the difference-in-differences predictions of the model.

Table 10 replicates the main results on the upturn-downturn difference of the FPS using

the subsample of the years 2000-2012, rather than the whole sample from 1980-2012. The

flow-performance relation is steeper in downturns than in upturns also in the latter part of

the sample. The importance of establishing robustness with respect to the sample is that the

retail versus institutional ownership variable is available only following the fourth quarter

of 1999, and imputed for the prior years in the regressions shown in the main paper. This

imputation might introduce a selection bias in the regressions on the whole sample. The

results in Table 10 show this imputation does not in any way drive our results. In fact, the

upturn-downturn difference is larger and more significant using the shorter sample, consistent

with the imputation introducing measurement error only but no bias. Table 12 shows the

result also obtains using the shorter sample and using a piecewise-linear specification, which

is the standard in the literature to capture the convexity of the flow-performance relation.

Table 11 replicates the FPS double-difference between upturns and downturns and Con-

centrated versus Other funds on the shorter sample. The results are stronger than with the

longer sample, consistent with the imputation introducing measurement error only, but no

bias.

Table 14 shows by the example of young versus old funds that the double-difference result

is robust to using measures of dispersion of beliefs other than Concentrated and Other. The

prior literature has used young funds as examples of funds with more widely dispersed beliefs.

We show in Table 13 that this is indeed the case. Young funds should therefore have a higher

FPS difference between upturns and downturns than old funds, as documented in Table 14.

The last two tables show that the FPS results are robust to the choice of sampling
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frequency. Although our main results are based on quarterly frequencies to be consistent with

the existing literature, we show here that the results also obtain at the monthly frequency.

Table 15 replicates the qualitative results from Table 10 at the monthly frequency, whereas

Table 16 replicates the results from Table 12 at the monthly frequency.

6 Conclusion

We provide a model of capital allocation to projects by Bayesian investors who are un-

certain about the projects’ risk loadings. We cast the interpretation of the model within the

framework of flows to mutual funds and show that it explains empirical key regularities that

existing models leave unexplained. In particular, we predict and find a pronounced nonlinear

and non-monotonic relationship between the flow-performance sensitivity and the state of

the market. The model makes additional predictions that we verify empirically. First, in-

vestors reallocate less capital across funds following extreme market realizations compared

to times following moderate market realizations. Second, the flow-performance relation is

steeper following market downturns than following market upturns. Third, the difference

between downturns and upturns is larger for funds about whose risk loadings investors are

more uncertain.

We view our results as providing a rational formalization for the Schumpeterian intuition

that downturns can have a cleansing effect on the economy in the sense of increasing the speed

of cross-sectional capital reallocation. In particular, we show that no behavioral or other

frictions are necessary, but that Bayesian learning about uncertain parameters is sufficient

to generate an asymmetry between upturns and downturns with respect to investors’ ability

to identify better projects.
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Appendix

It is useful to derive an additional lemma before proving Lemma 1.

Lemma 3. Based on current beliefs, investors value each dollar invested in the fund according

to

pit = 1 + α̂it −
1

η
Sit . (13)

Proof of Lemma 3 (Fund Value)

Recall that ft is the traded risk factor in mutual fund returns, and it is an excess return.

Based on standard results in asset pricing (e.g., Cochrane (2001)), the factor f can be priced

using investors’ stochastic discount factor mt+1:

Et [mt+1ft+1] = 0.

It follows that the factor expected return f̄ coincides with its risk premium:

f̄ = −Cov [mt+1, ξt+1]

= −Et [mt+1ξt+1] . (14)

We assume this risk premium to be positive: f̄ > 0; that is, ξt+1 covaries positively with the

stochastic discount factor. This assumption is discussed in section 3.2.
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The cash flows from fund i are valued according to

pit = Et
[
mt+1Y

i
t+1

]
= Et

[
mt+1

(
1 + αi + βi

(
f̄ + ξt+1

)
− 1

η
Sit + εit+1

)]
= 1 + α̂it + β̂it f̄ + β̂itEt [mt+1ξt+1]− 1

η
Sit

= 1 + α̂it −
1

η
Sit ,

where α̂it and β̂it are the time-t beliefs for αi and βi. The last step follows from equation (14).

�

Proof of Lemma 1 (Fund Size)

The equilibrium condition is that the value from the last dollar invested in each project

must be equal to the value invested in the risk-free asset. Because the risk-free rate is nor-

malized to zero, the value of a dollar invested in each fund i must be one dollar. Combining

this equilibrium condition with lemma 3, pit = 1+ α̂it− 1
η
Sit = 1 immediately yields the result.

�

Proof of Lemma 2 (Fund Flows)

Given our assumptions of normality, the beliefs about fund returns, conditional on the

market shock ξt, are normally distributed. As a result, the standard formulas for Bayesian

updating of beliefs apply. Bayesian updating occurs according to

α̂it = α̂it−1 + cov
[
α, Y i

t |ξt
] (Y i

t − E[Y i
t ])

var[Y i
t |ξt]
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with

var[Y i
t |ξt] = σ2

α + σ2
β(f̄ + ξt)

2 + σ2
ε ,

cov
[
α, Y i

t |ξt
]

= σ2
α.

The updating formula essentially replicates investors’ learning from past performance, that

is, regressing alpha on innovations in returns. Next, recall from the previous lemma that

Sit = η · α̂it.

Flows, or changes in fund size, are then implied by how much is learned about alpha:

Sit − Sit−1 = η · (α̂it − α̂it−1)

= η · cov
[
α, Y i

t |ξt
] (Y i

t − E[Y i
t ])

var[Y i
t |ξt]

= η · σ2
α

σ2
α + σ2

β

(
f̄ + ξt

)2
+ σ2

ε

.
(
Y i
t − E[Y i

t ]
)
,

which yields the desired expression for λ(ξt). �
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Proof of Proposition 2

Note that var[Y i
t |ξt] from the previous lemma is larger in downturns than in upturns of

equal magnitude. To be precise, we wish to prove

λ(ξt = −x) > λ(ξt = +x) (15)

for any x > 0, where λ(ξt) = σ2
α

σ2
α+σ2

β(f̄+ξt)
2
+σ2

ε

. By simply replacing x for ξ into the expression

for λ, one needs to prove

σ2
α

σ2
α + σ2

β

(
f̄ − x

)2
+ σ2

ε

>
σ2
α

σ2
α + σ2

β

(
f̄ + x

)2
+ σ2

ε

,

which simplifies to (
f̄ + x

)2
>
(
f̄ − x

)2

or, computing the squares,

f̄ 2 + 2xf̄ + x2 > f̄ 2 − 2xf̄ + x2

and, after simplifications, one obtains

x > −x,

which is verified because x > 0 by assumption.

�
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Proof of Proposition 3

We wish to show λConcentrated > λOther when

σ̄2
a,Concentrated = k · σ̄2

a,Other

and

σ̄2
a,Concentrated = k · σ̄2

a,Other

with k > 1. Plugging equations (7) and (8) into expression (6) yields

λConcentrated =
σ2
α,Concentrated

σ2
α,Concentrated + σ2

β,Concentrated

(
f̄ + ξt

)2
+ σ2

ε

=
kσ2

α,Other

kσ2
α,Other + kσ2

β,Other

(
f̄ + ξt

)2
+ k σ

2
ε

k

=
σ2
α,Other

σ2
α,Other + σ2

β,Other

(
f̄ + ξt

)2
+ σ2

ε

k

>
σ2
α,Other

σ2
α,Other + σ2

β,Other

(
f̄ + ξt

)2
+ σ2

ε

= λOther.

�
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Proof of Proposition 4

Using the expression λ(ξt) = σ2
α

σ2
α+σ2

β(f̄+ξt)
2
+σ2

ε

and assuming symmetric values for upturns

and downturns of absolute magnitude x > 0, we can write

λDT − λUT =
σ2
α

σ2
α + σ2

β

(
f̄ − x

)2
+ σ2

ε

− σ2
α

σ2
α + σ2

β

(
f̄ + x

)2
+ σ2

ε

=
4σ2

ασ
2
β f̄x(

σ2
α + σ2

β

(
f̄ + x

)2
+ σ2

ε

)(
σ2
α + σ2

β

(
f̄ − x

)2
+ σ2

ε

)
=

4σ2
ασ

2
β f̄x(

σ2
α + σ2

β f̄
2 + σ2

βx
2 + σ2

ε

)2 − 4σ4
βx

2f̄ 2
.

Using (7) and (8), when k > 1, we have

(λDT − λUT )Conc =

=
4σ2

α,Concσ
2
β,Concx(

σ2
α,Conc + σ2

β,Concf̄
2 + σ2

β,Concx
2 + σ2

ε

)2 − 4σ4
β,Concx

2f̄ 2

=
4k2σ2

α,Otherσ
2
β,Otherf̄x

k2

[(
σ2
α,Other + σ2

β,Otherf̄
2 + σ2

β,Otherx
2 + σ2

ε

k

)2

− 4σ4
β,Otherx

2f̄ 2

]
=

4σ2
α,Otherσ

2
β,Otherf̄x(

σ2
α,Other + σ2

β,Otherf̄
2 + σ2

β,Otherx
2 + σ2

ε

k

)2

− 4σ4
β,Otherx

2f̄ 2

>
4σ2

α,Otherσ
2
β,Otherf̄x(

σ2
α,Other + σ2

β,Otherf̄
2 + σ2

β,Otherx
2 + σ2

ε

)2 − 4σ4
β,Otherx

2f̄ 2

= (λDT − λUT )Other.

�
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Figure 3: Parametric estimation results from a non-linear least squares regression of estimates
of the flow-performance sensitivity on the market return in excess of the risk-free rate, in
which the functional form is forced to conform to the specification in equation (6), with 95%
confidence intervals.
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Table 3: Summary statistics of estimated alphas and risk factor loadings by fund type. For each fund, a risk model (either a

market model or a four-factor Carhart (1997) model) is estimated using the entire history of monthly returns. The table reports

the F-test for the null hypothesis of equal standard deviations between subsamples of funds by fund type.

Panel A: MARKET MODEL
Concentrated Others F-test (St. Dev.)

Mean St. Dev. Mean St. Dev. p-value

Alpha 0.0009 0.0045 -0.0003 0.0039 0.0000
Beta 1.0823 0.2479 1.0044 0.2037 0.0000

Panel B: CARHART MODEL
Concentrated Others F-test (St. Dev.)

Mean St. Dev. Mean St. Dev. p-value

Alpha -0.0005 0.0035 -0.0009 0.0029 0.0000
Mkt - Rf 1.0376 0.1706 1.0012 0.1335 0.0000

HML 0.0440 0.3660 0.0518 0.3226 0.0000
SMB 0.4223 0.3245 0.1533 0.3253 -0.9490
UMD 0.0401 0.1652 0.0151 0.1246 0.0000
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Table 4: Non-linear estimation results. The table reports pararmeter estimates of the parameters in equation (6) from a

non-linear least squares regression of the estimates of the flow-performance sensitivity on the market return in excess of the

risk-free rate. T-statistics are reported in parentheses which are based on robust standard errors. The sample ranges from

1980:Q1 to 2012:Q4.

σβ/σα σε/σα

Estimate 27.401*** 4.886***
t-stat (3.107) (17.978)

Observations 131
R-squared 0.500
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Table 5: Flow-Performance Sensitivity Extreme versus Moderate Realizations Results. The table reports slopes from Fama

and MacBeth (1973) regressions of quarterly flows on prior-quarter mutual fund rank by style-adjusted performance (frank style)

and controls. T-statistics are reported in parentheses. At the bottom of the table, we report the test statistic and p-value

(assuming normality) for the test of the null hypothesis that the difference between extremes and normal times in the slopes

on frank style is zero. The sample ranges from 1980:Q1 to 2012:Q4. Extremes are defined as periods with either below -5% or

above 5% market excess returns (CRSP value-weighted index). Moderate states are periods with market excess returns above

-5% but below 5%.

Flows (t+1) All quarters Extreme Moderate All quarters Extreme Moderate

frank style 0.043*** 0.029*** 0.058*** 0.034*** 0.027*** 0.043***
(12.188) (5.832) (14.793) (11.236) (6.472) (10.116)

flows style 0.207* 0.060 0.382***
(1.675) (0.273) (5.204)

fee -0.257 -0.287 -0.221
(-1.037) (-0.756) (-0.726)

logsize -0.001 -0.001 -0.001
(-1.298) (-0.923) (-0.910)

turn ratio -0.003** -0.003* -0.002
(-2.145) (-1.679) (-1.354)

vol 0.027 -0.123 0.203
(0.288) (-1.014) (1.457)

logage -0.008*** -0.010*** -0.006**
(-3.772) (-2.912) (-2.416)

flows 0.501*** 0.497*** 0.505***
(25.612) (16.817) (20.418)

Constant -0.016*** -0.012*** -0.020*** 0.025** 0.043*** 0.005
(-6.385) (-3.662) (-5.509) (2.407) (2.777) (0.342)

Observations 144,382 77,856 66,526 144,382 77,856 66,526
R-squared 0.044 0.033 0.057 0.435 0.428 0.444

Number of groups 131 71 60 131 71 60

z-stat 4.518 2.596
p-val 6.24e-06 0.00944
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Table 6: Flow-Performance Sensitivity Upturn-Downturn Results. The table reports slopes from Fama and MacBeth (1973)

regressions of quarterly flows on prior-quarter mutual fund rank by style-adjusted performance (frank style) and controls. T-

statistics are reported in parentheses. At the bottom of the table, we report the test statistic and p-value (assuming normality)

for the test of the null hypothesis that the difference between downturns and upturns in the slopes on frank style is zero. The

sample ranges from 1980:Q1 to 2012:Q4. Upturns and Downturns are defined, respectively, as the top and bottom 25% of

periods according to the distribution of the CRSP value-weighted index in excess of the risk-free rate since July 1926.

Flows (t+1) Upturns Downturns Upturns Downturns

frank style 0.021*** 0.051*** 0.020*** 0.045***
(2.771) (6.178) (3.489) (5.551)

flows style -0.281 0.295***
(-0.596) (3.116)

fee 0.116 -0.155
(0.191) (-0.332)

logsize -0.001 0.001
(-0.942) (0.765)

turn ratio -0.009*** -0.000
(-2.881) (-0.087)

vol -0.326* 0.410*
(-1.801) (1.704)

logage -0.015*** -0.024***
(-2.819) (-2.766)

flows 0.530*** 0.464***
(12.816) (8.853)

Constant -0.002 -0.023*** 0.079*** 0.055*
(-0.452) (-4.742) (3.447) (1.778)

Observations 30,850 35,758 30,850 35,758
R-squared 0.027 0.058 0.467 0.397

Number of groups 32 30 32 30

z-stat 2.623 2.564
p-val 0.00872 0.0103
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Table 7: Flow-Performance Sensitivity Double-Difference Results. The table reports slopes from Fama and MacBeth (1973)

regressions of quarterly flows on prior-quarter mutual fund rank by style-adjusted performance (frank style) and controls. The

rank variable is interacted with a dummy variable denoting “Concentrated” funds, which are the funds with above-median

levels of active share and tracking error. T-statistics are reported in parentheses. At the bottom of the table, we report the

test statistic and p-value (assuming normality) for the test of the null hypothesis that the difference between downturns and

upturns in the slope on frank style×concentrated is zero. The sample ranges from 1980:Q1 to 2009:Q3. Upturns and Downturns

are defined, respectively, as the top and bottom 25% of periods according to the distribution of the CRSP value-weighted index

in excess of the risk-free rate since July 1926.

Panel A: No controls Panel B: With controls

Flows (t+1) All quarters UT DT All quarters UT DT

frank style × concentr. 0.022** -0.036 0.075*** 0.015 -0.023 0.063**
(2.015) (-1.449) (2.833) (1.334) (-0.872) (2.321)

frank style 0.050*** 0.041*** 0.045*** 0.039*** 0.032* 0.034***
(9.173) (2.974) (3.632) (7.330) (2.028) (3.249)

concentrated 0.001 0.029 -0.018* -0.001 0.009 -0.016
(0.098) (1.308) (-1.837) (-0.160) (0.308) (-1.615)

flows style 0.248*** 0.209 0.250**
(3.933) (1.703) (2.716)

fee 0.602 2.449** 0.092
(1.351) (2.260) (0.087)

logsize -0.001 -0.000 -0.000
(-1.185) (-0.187) (-0.026)

turn ratio -0.003 -0.017 0.006
(-0.909) (-1.488) (1.306)

vol 0.087 0.183 0.268
(0.304) (0.157) (0.848)

logage -0.023 -0.071 -0.009
(-1.606) (-1.214) (-0.587)

flows 0.539*** 0.523*** 0.529***
(16.734) (9.058) (5.912)

Constant -0.018*** -0.008 -0.020*** 0.076 0.272 0.006
(-6.065) (-0.965) (-3.303) (1.453) (1.301) (0.076)

Observations 19,577 3,540 4,881 19,577 3,540 4,881
R-squared 0.119 0.111 0.138 0.430 0.473 0.410

Number of groups 117 27 27 117 27 27

p-val 0.00219 0.0232
z-stat 3.063 2.270
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Table 8: Flow-Performance Sensitivity Extreme versus Moderate Realizations Results (Piecewise Linear Specification). The

table reports slopes from Fama and MacBeth (1973) regressions of quarterly flows on prior-quarter mutual fund rank by

style-adjusted performance and controls. The rank variable is defined to separately capture performance between 0 and 1/3

(trank style1), between 1/3 and 2/3 (trank style2), and between 2/3 and the top (trank style3) of the distribution. T-statistics

are reported in parentheses. At the bottom of the table, we report the p-value (assuming normality) for the test of the hypothesis

that the differences between downturns and upturns in the slopes on trank style1, trank style2, and trank style3 are jointly

zero. The sample ranges from 1980:Q1 to 2012:Q4. Extremes are defined as periods with either below -5% or above 5% market

excess returns (CRSP value-weighted index). Moderate states are periods with market excess returns above -5% but below 5%.

Panel A: No controls Panel B: With controls

Flows (t+1) All quarters Extreme Moderate All quarters Extreme Moderate

trank style1 0.042*** 0.028* 0.059*** 0.025** 0.023 0.029**
(4.282) (1.935) (4.581) (2.427) (1.439) (2.145)

trank style2 0.032*** 0.027** 0.039*** 0.031*** 0.030* 0.033**
(3.699) (2.084) (3.387) (3.155) (1.986) (2.631)

trank style3 0.062*** 0.037** 0.092*** 0.049*** 0.031** 0.069***
(5.929) (2.566) (6.352) (5.046) (2.221) (5.550)

flows style 0.210* 0.066 0.381***
(1.693) (0.299) (5.090)

fee -0.199 -0.210 -0.187
(-0.762) (-0.552) (-0.527)

logsize -0.001 -0.001 -0.000
(-1.132) (-1.250) (-0.317)

turn ratio -0.003** -0.003* -0.002
(-2.188) (-1.698) (-1.383)

vol 0.012 -0.124 0.173
(0.119) (-0.913) (1.257)

logage -0.009*** -0.010** -0.006*
(-2.946) (-2.330) (-1.806)

flows 0.501*** 0.495*** 0.508***
(25.118) (15.808) (21.942)

Constant -0.015*** -0.012*** -0.019*** 0.029** 0.046** 0.007
(-4.768) (-2.973) (-3.754) (2.242) (2.484) (0.450)

Observations 144,382 77,856 66,526 144,382 77,856 66,526
R-squared 0.072 0.062 0.084 0.458 0.453 0.463

Number of groups 131 71 60 131 71 60

p-val(χ2) 6.31e-05 0.0255
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Table 9: Flow-Performance Sensitivity Upturn-Downturn Results (Piecewise Linear Specification). The table reports slopes

from Fama and MacBeth (1973) regressions of quarterly flows on prior-quarter mutual fund rank by style-adjusted performance

and controls. The rank variable is defined to separately capture performance between 0 and 1/3 (trank style1), between 1/3 and

2/3 (trank style2), and between 2/3 and the top (trank style3) of the distribution. T-statistics are reported in parentheses. At

the bottom of the table, we report the p-value (assuming normality) for the test of the hypothesis that the differences between

downturns and upturns in the slopes on trank style1, trank style2, and trank style3 are jointly zero. The sample ranges from

1980:Q1 to 2012:Q4. Upturns and Downturns are defined, respectively, as the top and bottom 25% of periods according to the

distribution of the CRSP value-weighted index in excess of the risk-free rate since July 1926.

Panel A: No controls Panel B: With controls

Flows (t+1) Upturns Downturns Upturns Downturns

trank style1 0.005 0.040** 0.020 0.033
(0.189) (2.486) (0.748) (1.219)

trank style2 0.037 0.049** 0.025 0.047**
(1.481) (2.591) (0.876) (2.315)

trank style3 0.011 0.066*** 0.015 0.053**
(0.406) (3.034) (0.698) (2.749)

flows style -0.268 0.297***
(-0.568) (3.145)

fee 0.242 -0.132
(0.462) (-0.201)

logsize -0.001 0.001
(-1.348) (1.103)

turn ratio -0.009*** 0.000
(-3.037) (0.049)

vol -0.375* 0.367
(-1.832) (1.461)

logage -0.021*** -0.023**
(-3.424) (-2.711)

flows 0.522*** 0.468***
(11.869) (8.753)

Constant 0.000 -0.021*** 0.103*** 0.052
(0.060) (-3.629) (4.963) (1.663)

Observations 30,850 35,758 30,850 35,758
R-squared 0.068 0.086 0.501 0.424

Number of groups 32 30 32 30

p-val(χ2) 0.0348 0.0456
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Table 10: Flow-Performance Sensitivity Upturn-Downturn Results: Robustness to Sample Selection. The table reports slopes

from Fama and MacBeth (1973) regressions of quarterly flows on prior-quarter mutual fund rank by style-adjusted performance

(frank style) and controls. T-statistics are reported in parentheses. At the bottom of the table, we report the test statistic and

p-value (assuming normality) for the test of the null hypothesis that the difference between downturns and upturns in the slopes

on frank style is zero. The sample ranges from 2000:Q1 to 2012:Q4. Upturns and Downturns are defined, respectively, as the

top and bottom 25% of periods according to the distribution of the CRSP value-weighted index in excess of the risk-free rate

since July 1926.

Flows (t+1) All quarters Upturns Downturns All quarters Upturns Downturns

frank style 0.042*** 0.014** 0.050*** 0.031*** 0.019*** 0.038***
(-10.525) (-2.795) (-7.726) (-14.129) (-6.227) (-8.875)

flows style 0.510*** 0.302** 0.639***
(8.018) (3.111) (4.206)

fee -1.190*** -1.222*** -1.258***
(-10.258) (-5.840) (-3.921)

logsize -0.001*** -0.000 -0.001*
(-4.350) (-0.587) (-1.815)

turn ratio -0.002*** -0.003** -0.000
(-3.195) (-3.049) (-0.086)

vol -0.066 -0.387*** 0.097
(-1.030) (-5.720) (0.677)

logage -0.007*** -0.008*** -0.005***
(-12.026) (-8.323) (-7.100)

flows 0.592*** 0.600*** 0.588***
(37.194) (20.846) (18.315)

Constant -0.030*** -0.015*** -0.035*** 0.036*** 0.063*** 0.021
(-10.377) (-3.350) (-5.309) (8.258) (11.588) (1.759)

Observations 129,482 25,941 33,832 129,482 25,941 33,832
R-squared 0.038 0.006 0.048 0.468 0.465 0.422

Number of groups 51 11 14 51 11 14

p-val 1.07e-05 0.000324
z-stat 4.402 3.595
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Table 11: Flow-Performance Sensitivity Double-Difference Results: Robustness to Sample Selection. The table reports slopes

from Fama and MacBeth (1973) regressions of quarterly flows on prior-quarter mutual fund rank by style-adjusted performance

(frank style) and controls. The rank variable is interacted with a dummy variable denoting “Concentrated” funds, which are

the funds with above-median levels of active share and tracking error. T-statistics are reported in parentheses. At the bottom

of the table, we report the test statistic and p-value (assuming normality) for the test of the null hypothesis that the difference

between downturns and upturns in the slope on frank style×concentrated is zero. The sample ranges from 2000:Q1 to 2009:Q3.

Upturns and Downturns are defined, respectively, as the top and bottom 25% of periods according to the distribution of the

CRSP value-weighted index in excess of the risk-free rate since July 1926.

Panel A: No controls Panel B: With controls

Flows (t+1) All quarters UT DT All quarters UT DT

frank style × concentr. 0.030*** 0.006 0.041** 0.017** -0.012 0.028*
(4.058) (0.388) (3.006) (2.470) (-1.911) (1.931)

frank style 0.052*** 0.031 0.050*** 0.043*** 0.045*** 0.048***
(10.136) (1.799) (7.987) (10.918) (8.707) (7.284)

concentrated -0.005 0.004 -0.004 -0.000 0.007* -0.002
(-1.181) (0.370) (-0.483) (-0.137) (2.128) (-0.217)

flows style 0.506*** 0.003 0.658***
(4.326) (0.008) (5.772)

fee -0.732** -0.069 -0.542
(-2.200) (-0.068) (-0.710)

logsize -0.003*** -0.003 -0.002*
(-4.030) (-1.142) (-2.025)

turn ratio -0.002 -0.002 0.001
(-1.258) (-0.535) (0.272)

vol -0.038 -0.786 0.313
(-0.240) (-1.858) (1.028)

logage -0.007*** -0.010* -0.003
(-5.029) (-2.483) (-1.373)

flows 0.625*** 0.633*** 0.645***
(21.562) (11.236) (11.202)

Constant -0.022*** 0.000 -0.025*** 0.035*** 0.086** -0.009
(-6.452) (0.052) (-5.367) (3.285) (3.151) (-0.390)

Observations 13,462 1,865 4,142 13,462 1,865 4,142
R-squared 0.054 0.021 0.054 0.318 0.334 0.276

Number of groups 38 6 12 38 6 12

p-val 0.102 0.0114
z-stat 1.634 2.531
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Table 12: Flow-Performance Sensitivity Upturn-Downturn Results (Piecewise Linear Specification): Robustness to Sample

Selection. The table reports slopes from Fama and MacBeth (1973) regressions of quarterly flows on prior-quarter mutual fund

rank by style-adjusted performance and controls. The rank variable is defined to separately capture performance between 0

and 1/3 (trank style1), between 1/3 and 2/3 (trank style2), and between 2/3 and the top (trank style3) of the distribution.

T-statistics are reported in parentheses. At the bottom of the table, we report the p-value (assuming normality) for the test of

the hypothesis that the differences between downturns and upturns in the slopes on trank style1, trank style2, and trank style3

are jointly zero. The sample ranges from 2000:Q1 to 2012:Q4. Upturns and Downturns are defined, respectively, as the top and

bottom 25% of periods according to the distribution of the CRSP value-weighted index in excess of the risk-free rate since July

1926.

Panel A: No controls Panel B: With controls

Flows (t+1) All quarters Upturns Downturns All quarters Upturns Downturns

trank style1 0.046*** -0.006 0.048*** 0.032*** 0.013 0.038***
(7.729) (-0.533) (6.656) (8.971) (1.734) (5.824)

trank style2 0.022*** 0.016 0.022** 0.014*** 0.013** 0.015**
(4.128) (1.659) (2.421) (5.258) (2.623) (2.729)

trank style3 0.075*** 0.030*** 0.108*** 0.063*** 0.039*** 0.082***
(11.435) (3.502) (9.088) (13.225) (4.760) (10.064)

flows style 0.491*** 0.295*** 0.583***
(8.096) (3.405) (4.187)

fee -1.134*** -1.188*** -1.172***
(-10.640) (-6.385) (-3.971)

logsize -0.001*** -0.000 -0.001
(-3.772) (-0.323) (-1.592)

turn ratio -0.001*** -0.002*** -0.001
(-3.535) (-3.260) (-0.810)

vol -0.084 -0.420*** 0.083
(-1.288) (-5.922) (0.563)

logage -0.007*** -0.008*** -0.005***
(-12.176) (-8.531) (-6.753)

flows 0.579*** 0.585*** 0.576***
(37.159) (21.134) (18.312)

Constant -0.030*** -0.011** -0.032*** 0.037*** 0.066*** 0.021*
(-9.430) (-2.498) (-4.533) (8.233) (11.040) (1.843)

Observations 129,482 25,941 33,832 129,482 25,941 33,832
R-squared 0.041 0.008 0.053 0.466 0.462 0.421

Number of groups 51 11 14 51 11 14

p-val(χ2) 1.97e-08 0.00150
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Table 13: Summary statistics of alpha and risk factor loadings by fund type (Old vs. Young). For each fund, a risk model

(either market model or four-factor Carhart (1997) model) is estimated using the entire history of monthly returns. The table

reports the F-test for the null hypothesis of equal standard deviations between subsamples of funds by fund type.

Panel A: MARKET MODEL
Old Young F-test (St. Dev.)

Mean St. Dev. Mean St. Dev. p-value

Alpha -0.0012 0.0030 -0.0008 0.0032 0.0480
Beta 1.0619 0.2009 1.0246 0.3187 0.0000

Panel B: CARHART MODEL
Old Young F-test (St. Dev.)

Mean St. Dev. Mean St. Dev. p-value

Alpha -0.0014 0.0029 -0.0013 0.0027 0.0570
Mkt - Rf 1.0211 0.1233 0.9949 0.2826 0.0000

HML -0.0405 0.3050 -0.0114 0.2998 0.6760
SMB 0.2068 0.3351 0.1932 0.3472 0.4420
UMD 0.0323 0.1311 0.0042 0.1226 0.1160
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Table 14: Flow-Performance Sensitivity Double-Difference Results: Robustness to Sample Split Criteria. The table reports

slopes from Fama and MacBeth (1973) regressions of quarterly flows on prior-quarter mutual fund rank by style-adjusted

performance (frank style) and controls. The rank variable is interacted with a dummy variable denoting “young” funds, which

are the funds with below-median levels of age. “Old” funds are defined symmetrically. T-statistics are reported in parentheses.

At the bottom of the table, we report the test statistic and p-value (assuming normality) for the test of the null hypothesis

that the difference between downturns and upturns in the slope on frank style×concentrated is zero. The sample ranges from

2000:Q1 to 2012:Q4. Upturns and Downturns are defined, respectively, as the top and bottom 25% of periods according to the

distribution of the CRSP value-weighted index in excess of the risk-free rate since July 1926.

Panel A: No controls Panel B: With controls

Flows (t+1) All quarters UT DT All quarters UT DT

frank style × young 0.010*** -0.005 0.014*** 0.006*** -0.002 0.006*
(3.913) (-1.233) (3.908) (3.704) (-0.609) (1.909)

frank style 0.038*** 0.017** 0.044*** 0.028*** 0.020*** 0.036***
(10.845) (3.077) (6.735) (13.722) (5.661) (8.504)

Young 0.023*** 0.028*** 0.018*** -0.000 0.003 -0.000
(15.257) (8.323) (6.502) (-0.399) (1.403) (-0.003)

flows style 0.510*** 0.304** 0.641***
(8.053) (3.126) (4.262)

fee -1.178*** -1.208*** -1.244***
(-10.168) (-5.760) (-3.920)

logsize -0.001*** -0.000 -0.001*
(-4.173) (-0.416) (-1.805)

turn ratio -0.002*** -0.003** -0.000
(-3.153) (-3.068) (-0.078)

vol -0.061 -0.383*** 0.101
(-0.936) (-5.545) (0.699)

logage -0.005*** -0.007*** -0.004***
(-8.157) (-5.624) (-3.587)

flows 0.591*** 0.600*** 0.587***
(36.996) (20.867) (18.135)

Constant -0.040*** -0.027*** -0.043*** 0.031*** 0.056*** 0.014
(-15.279) (-6.289) (-7.370) (6.676) (9.480) (1.230)

Observations 129,482 25,941 33,832 129,482 25,941 33,832
R-squared 0.074 0.035 0.079 0.469 0.466 0.422

Number of groups 51 11 14 51 11 14

p-val 0.000476 0.063
z-stat 3.494 1.859
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Table 15: Flow-Performance Sensitivity Upturn-Downturn Results: Robustness to Sampling Frequency. The table reports

slopes from Fama and MacBeth (1973) regressions of monthly flows on prior-month mutual fund rank by style-adjusted perfor-

mance (frank style) and controls. T-statistics are reported in parentheses. At the bottom of the table, we report the test statistic

and p-value (assuming normality) for the test of the null hypothesis that the difference between downturns and upturns in the

slopes on frank style is zero. The sample ranges from January 2000 to December 2012. Upturns and Downturns are defined,

respectively, as the top and bottom 25% of periods according to the distribution of the CRSP value-weighted index in excess

of the risk-free rate since July 1926.

Flows (t+1) All quarters Upturns Downturns All quarters Upturns Downturns

frank style 0.009*** 0.000 0.012*** 0.006*** 0.003*** 0.006***
(8.991) (0.141) (5.619) (18.236) (4.586) (9.199)

flows style 0.323*** 0.315*** 0.301***
(14.251) (8.712) (6.172)

fee -0.286*** -0.184*** -0.319***
(-11.239) (-4.127) (-4.209)

logsize -0.000** -0.000 -0.000**
(-2.525) (-0.564) (-2.685)

turn ratio -0.000*** -0.001*** -0.000
(-3.332) (-2.910) (-0.141)

vol -0.034*** -0.079*** -0.013
(-3.236) (-4.193) (-0.571)

logage -0.003*** -0.003*** -0.002***
(-22.967) (-12.643) (-10.249)

flows 0.606*** 0.597*** 0.582***
(72.923) (40.362) (32.706)

Constant -0.005*** 0.001 -0.008*** 0.015*** 0.017*** 0.012***
(-7.705) (0.646) (-4.777) (18.279) (11.549) (5.535)

Observations 431,437 79,593 108,911 369,549 65,362 92,088
R-squared 0.019 0.008 0.026 0.459 0.450 0.414

Number of groups 155 30 42 155 30 42

p-val 3.80e-05 0.00410
z-stat 4.119 2.870

63



Table 16: Flow-Performance Sensitivity Upturn-Downturn Results (Piecewise Linear Specification): Robustnes to Sampling

Frequency. The table reports slopes from Fama and MacBeth (1973) regressions of quarterly flows on prior-quarter mutual fund

rank by style-adjusted performance and controls. The rank variable is defined to separately capture performance between 0

and 1/3 (trank style1), between 1/3 and 2/3 (trank style2), and between 2/3 and the top (trank style3) of the distribution.

T-statistics are reported in parentheses. At the bottom of the table, we report the p-value (assuming normality) for the test of

the hypothesis that the differences between downturns and upturns in the slopes on trank style1, trank style2, and trank style3

are jointly zero. The sample ranges from January 2000 to December 2012. Upturns and Downturns are defined, respectively, as

the top and bottom 25% of periods according to the distribution of the CRSP value-weighted index in excess of the risk-free

rate since July 1926.

Panel A: No controls Panel B: With controls

Flows (t+1) All quarters Upturns Downturns All quarters Upturns Downturns

trank style1 0.010*** -0.002 0.011*** 0.006*** 0.001 0.007***
(7.124) (-0.594) (3.906) (8.000) (0.774) (3.529)

trank style2 0.003*** -0.002 0.005** 0.001* 0.001 0.000
(2.656) (-0.776) (2.327) (1.669) (0.830) (0.152)

trank style3 0.019*** 0.008*** 0.025*** 0.015*** 0.010*** 0.018***
(11.929) (3.188) (7.001) (14.401) (7.598) (5.972)

flows style 0.327*** 0.320*** 0.303***
(14.158) (8.746) (6.187)

fee -0.293*** -0.187*** -0.332***
(-11.091) (-4.167) (-4.165)

logsize -0.000*** -0.000 -0.000***
(-2.644) (-0.534) (-3.137)

turn ratio -0.000*** -0.001*** -0.000
(-3.542) (-2.933) (-0.290)

vol -0.037*** -0.083*** -0.010
(-3.477) (-4.434) (-0.434)

logage -0.003*** -0.003*** -0.002***
(-21.741) (-12.881) (-7.891)

flows 0.603*** 0.596*** 0.575***
(68.562) (40.332) (27.862)

Constant -0.007*** 0.000 -0.008*** 0.015*** 0.018*** 0.013***
(-8.927) (0.005) (-5.011) (18.880) (11.072) (5.903)

Observations 369,549 65,362 92,088 369,549 65,362 92,088
R-squared 0.024 0.011 0.036 0.461 0.451 0.418

Number of groups 155 30 42 155 30 42

p-val(χ2) 9.32e-05 0.0104
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